Câu hỏi:

26/10/2025 8 Lưu

Cho bảng dữ liệu sau về kết quả xét nghiệm một loại bệnh

Cho bảng dữ liệu sau về kết quả xét nghiệm một loại bệnh   Nếu một người có kết quả xét nghiệm dương tính, xác suất người đó thực sự mắc bệnh là bao nhiêu? A. 10%.	B. 77%.	C. 90%.	D. 50%. (ảnh 1)

Nếu một người có kết quả xét nghiệm dương tính, xác suất người đó thực sự mắc bệnh là bao nhiêu?

A. 10%.                       
B. 77%.                       
C. 90%.                                   
D. 50%.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi A là biến cố “Người đó thực sự bị mắc bệnh”; B là biến cố “người đó có kết quả xét nghiệm dương tính”.

Theo đề ta có \(P\left( A \right) = \frac{{120}}{{1000}} = \frac{3}{{25}}\); \(P\left( B \right) = \frac{{130}}{{1000}} = \frac{{13}}{{100}}\); \(P\left( {B|A} \right) = \frac{{100}}{{120}} = \frac{{10}}{{12}}\).

Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{25}}.\frac{{10}}{{12}}}}{{\frac{{13}}{{100}}}} \approx 77\% \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố “Lấy được viên bi màu trắng từ hộp I bỏ sang hộp II”;

B là biến cố “Lấy được viên bi màu trắng từ hộp II”.

Theo đề ta có \(P\left( A \right) = \frac{5}{{10}} = \frac{1}{2} \Rightarrow P\left( {\overline A } \right) = \frac{1}{2}\); \(P\left( {B|A} \right) = \frac{7}{{11}};P\left( {B|\overline A } \right) = \frac{6}{{11}}\).

Có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{1}{2}.\frac{7}{{11}} + \frac{1}{2}.\frac{6}{{11}} = \frac{{13}}{{22}}\).

Theo công thức Bayes:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{2}.\frac{7}{{11}}}}{{\frac{{13}}{{22}}}} = \frac{7}{{13}}\).

Suy ra \(a = 7;b = 13\). Do đó \(S = {a^2} + {b^2} = 218\).

Trả lời: 218.

Lời giải

Số học sinh nữ là đoàn viên là 60%.150 = 90 học sinh.

Số học sinh nam là đoàn viên là 50%.100 = 50 học sinh.

Gọi A là biến cố “Chọn được học sinh là đoàn viên”; B là biến cố “Chọn được học sinh nam”.

Ta có \(P\left( B \right) = \frac{{100}}{{250}} = \frac{2}{5} \Rightarrow P\left( {\overline B } \right) = \frac{3}{5}\); \(P\left( {A|B} \right) = \frac{{50}}{{100}} = 0,5;P\left( {A|\overline B } \right) = \frac{{90}}{{150}} = 0,6\).

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\)\( = \frac{2}{5}.0,5 + \frac{3}{5}.0,6 = 0,56\).

Trả lời: 0,56.

Câu 5

A. \(\frac{{20}}{{23}}\).                                  
B. \(\frac{{19}}{{21}}\). 
C. \(\frac{{19}}{{23}}\).  
D. \(\frac{{20}}{{21}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP