Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình thang \(\left( {AB\,{\rm{//}}\,CD} \right)\). Gọi \[I\], \[J\] lần lượt là trung điểm của \(AD\) và \(BC\), \(G\) là trọng tâm \(\Delta SAB\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)và \(\left( {IJG} \right)\)là
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Chọn D

Ta có \[IJ\,{\rm{//}}\,AB\] \[\left( 1 \right)\] (đường trung bình hình thang).
\(G \in \left( {GIJ} \right) \cap \left( {SAB} \right)\) \(\left( 2 \right)\).
\(IJ \subset \left( {GIJ} \right)\),\(AB \subset \left( {SAB} \right)\) \(\left( 3 \right)\).
Từ \(\left( 1 \right)\), \(\left( 2 \right)\),\(\left( 3 \right) \Rightarrow Gx = \left( {GIJ} \right) \cap \left( {SAB} \right)\), \(Gx\,{\rm{//}}\,AB\), \(Gx\,{\rm{//}}\,CD\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \({u_1}\)là số tiền phải trả cho \[10\]số điện đầu tiên. \({u_1}\)=10. 800= 8000 (đồng)
\({u_2}\)là số tiền phải trả cho các số điện từ \[11\]đến \[20\]: \({u_2} = {u_1}(1 + 0,025)\)
\({u_{34}}\)là số tiền phải trả cho các số điện từ \[331\]đến \[340\]: \({u_{34}} = {u_1}{(1 + 0,025)^{33}}\)
Số tiền phải trả cho \[340\]số điện đầu tiên là: \({S_1} = {u_1}.\frac{{1 - {{\left( {1 + 0,025} \right)}^{34}}}}{{1 - \left( {1 + 0,025} \right)}} = 420903,08\)
Số tiền phỉ trả cho các số điện từ \[341\]đến \[347\]là: \({S_2} = 7.800{(1 + 0,025)^{34}} = 12965,80\)
Vậy tháng \[1\]gia đình ông A phải trả số tiền là: \(S = {S_1} + {S_2} = 433868,89\)(đồng).
Lời giải

Chọn mặt phẳng \(\left( {SCI} \right)\) chứa \(SO\)
Ta có \(\left\{ \begin{array}{l}J \in MN \subset \left( {MNC} \right)\\J \in SI \subset \left( {SIC} \right)\end{array} \right.\) \( \Rightarrow J \in \left( {SIC} \right) \cap \left( {MNC} \right)\) \( \Rightarrow CJ = \left( {SIC} \right) \cap \left( {MNC} \right)\)
Gọi \(K\) là giao điểm của \(JC\) và \(SO\) trong mặt phẳng \(\left( {SCI} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}K \in SO\\K \in CJ \subset \left( {CMN} \right)\end{array} \right.\)\( \Rightarrow K = SO \cap \left( {CMN} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
