Câu hỏi:

27/10/2025 15 Lưu

Trong Địa lí, phép chiếu hình trụ được sử dụng để vẽ một bản đồ phẳng như trong Hình 9. Trên bản đồ phẳng lấy đường xích đạo làm trực hoành và kinh tuyến \({0^0}\)làm trục tung. Khi đó tung độ của một điểm có vĩ độ \({\varphi ^0}( - 90 < \varphi  < 90)\)được cho bởi hàm số \(y = 30\tan (\frac{\pi }{{180}}\varphi )\,(cm)\). Sử dụng đồ thị hàm số tang, Biết điểm ở vĩ độ dương lớn nhất là \({A^0}\) nằm cách xích đạo không quá \(30\,cm\)trên bản đồ. Tìm \(A\)

Trong Địa lí, phép chiếu hì (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì điểm cách xích đạo không quá \(30cm\)trên bản đồ nên ta có

\(( - 30 \le y \le 30)\). Khi đó: \( - 30 \le 30\tan (\frac{\pi }{{180}}\varphi )\, \le 30\)

Hay \( - 1 \le \tan (\frac{\pi }{{180}}\varphi )\, \le 1\).

Ta có: \(( - 90 < \varphi  < 90) \Leftrightarrow \frac{{ - \pi }}{2} < \frac{\pi }{{180}}\varphi  < \frac{\pi }{2}\)

Xét đồ thị hàm số \(y = \tan x\) trên khoảng \((\frac{{ - \pi }}{2};\frac{\pi }{2})\)(Hình).

Trong Địa lí, phép chiếu hì (ảnh 2)

Ta thấy \( - 1 \le \tan (\frac{\pi }{{180}}\varphi )\, \le 1\) khi và chỉ khi \((\frac{{ - \pi }}{4} \le \frac{\pi }{{180}}\varphi  \le \frac{\pi }{4}\))

Hay \( - 45 \le \varphi  \le 45\).

Vậy trên bản đồ, các điểm cách xích đạo không quá \(30cm\) nằm ở vĩ

Độ từ \( - {45^0}\) đến \({45^0}\). Điểm ở vĩ độ dương lớn nhất là \({45^0}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

S

b)

S

c)

Đ

d)

Đ

 (Sai) Đường thẳng \(MN\) song song với đường thẳng \(BD\)
(Vì): \(MN\) là đường trung bình của nên \(MN\parallel AC\). Vì \(AC\) cắt \(BD\) nên \(MN\) không thể song song với \(BD\).
(Đúng) Giao tuyến của mặt phẳng \((MNB)\) và mặt phẳng \((ABCD)\) là một đường thẳng đi qua \(B\) và song song với \(AC\)
(Vì): Ta có \(B\) là điểm chung, \(MN \subset (MNB)\), \(AC \subset (ABCD)\)\(MN\parallel AC\). Theo định lí về giao tuyến, giao tuyến sẽ đi qua \(B\) và song song với \(AC,MN\).
(Đúng) Gọi \(O\) là tâm hình bình hành \(ABCD\). Giao tuyến của \((MNB)\)\((SBD)\) là đường thẳng đi qua \(B\) và trung điểm của đoạn \(SO\)
(Vì): Gọi \(K = MN \cap SO\) suy ra \(K\) là trung điểm của \(SO\) (do tính chất đường trung bình trong ). Giao tuyến cần tìm chính là đường thẳng \(BK\).
(Sai) Thiết diện của hình chóp khi cắt bởi mặt phẳng \((MNB)\) là một hình thang
(Vì): Thiết diện là tứ giác \(MNIB\) (với \(I = BK \cap SD\)). Tứ giác này không phải là hình thang vì không có cặp cạnh đối nào song song.

Lời giải

Ta có quãng đường tàu thứ nhất đi được là \({s_1} = {v_1}t = 20 \cdot 3 = 60\) (km).

Quãng đường tàu thứ hai đi được là \({s_2} = {v_2}t = 30 \cdot 3 = 90\) (km).

Tam giác \(ABC\) với \(B\) là vị trí tàu thứ nhất chạy đến sau \(3\) giờ, nghĩa là \(AB = {s_1} = 60\) km; \(C\) là vị trí tàu thứ hai chạy đến sau \(3\) giờ, nghĩa là \(AC = {s_2} = 90\) km.

BC2=AB2+AC22ABACcosBAC^BC2=602+90226090cos60°BC2=6300.

Vậy khoảng cách hai tàu sau \(3\) giờ chạy là \(BC = 30\sqrt 7 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP