Từ một vị trí ban đầu trong không gian, vệ tinh \(X\) chuyển động theo quỹ đạo là một đường tròn quanh Trái Đất và luôn cách tâm Trái Đất một khoảng bằng \(9200\) km. Sau \(2\) giờ thì vệ tinh \(X\) hoàn thành hết một vòng di chuyển.
a) Sau khoảng \(5,3\) giờ thì \(X\) di chuyển được quãng đường \(240000\) km.
b) Quãng đường vệ tinh \(X\) chuyển động được sau \(1\) giờ là \(28902,65\) km (làm tròn đến hàng phần trăm).
c) Quãng đường vệ tinh \(X\) chuyển động được sau \(1,5\) giờ là \(43353,98\) km (làm tròn đến hàng phần trăm).
d) Giả sử vệ tinh di chuyển theo chiều dương của đường tròn, sau \(4,5\) giờ thì vệ tinh vẽ nên một góc \(\frac{{9\pi }}{2}\) rad.
Từ một vị trí ban đầu trong không gian, vệ tinh \(X\) chuyển động theo quỹ đạo là một đường tròn quanh Trái Đất và luôn cách tâm Trái Đất một khoảng bằng \(9200\) km. Sau \(2\) giờ thì vệ tinh \(X\) hoàn thành hết một vòng di chuyển.
a) Sau khoảng \(5,3\) giờ thì \(X\) di chuyển được quãng đường \(240000\) km.
b) Quãng đường vệ tinh \(X\) chuyển động được sau \(1\) giờ là \(28902,65\) km (làm tròn đến hàng phần trăm).
c) Quãng đường vệ tinh \(X\) chuyển động được sau \(1,5\) giờ là \(43353,98\) km (làm tròn đến hàng phần trăm).
d) Giả sử vệ tinh di chuyển theo chiều dương của đường tròn, sau \(4,5\) giờ thì vệ tinh vẽ nên một góc \(\frac{{9\pi }}{2}\) rad.
Quảng cáo
Trả lời:
|
a) |
S |
b) |
Đ |
c) |
Đ |
d) |
Đ |
(Đúng) Quãng đường vệ tinh \(X\) chuyển động được sau \(1\) giờ là \(28902,65\) km (làm tròn đến hàng phần trăm)
(Vì): Đúng.\\ Một vòng di chuyển của \(X\) chính là chu vi đường tròn
\(C = 2\pi R = 2\pi \cdot 9200 = 18400\pi \)(km)
Sau \(1\) giờ, vệ tinh di chuyển nửa đường tròn với quãng đường là
\(\frac{1}{2}C = 9200\pi \approx 28902,65\)(km).
(Đúng) Quãng đường vệ tinh \(X\) chuyển động được sau \(1,5\) giờ là \(43353,98\) km (làm tròn đến hàng phần trăm)
(Vì): Đúng.\\ Sau \(1,5\) giờ, vệ tinh di chuyển được \(\frac{{1,5 \cdot 1}}{2}\) đường tròn (hay \(\frac{3}{4}\) đường tròn), quãng đường là \(\frac{3}{4}C = \frac{3}{4} \cdot 18400\pi = 13800\pi \approx 43353,98\) km.
(Sai) Sau khoảng \(5,3\) giờ thì \(X\) di chuyển được quãng đường \(240000\) km
(Vì): Sai.\\ Số giờ để vệ tinh \(X\) thực hiện quãng đường \(240000\) km là \(\frac{{240000}}{{9200\pi }} \approx 8,3\) (giờ)
(Đúng) Giả sử vệ tinh di chuyển theo chiều dương của đường tròn, sau \(4,5\) giờ thì vệ tinh vẽ nên một góc \(\frac{{9\pi }}{2}\) rad
(Vì): Đúng.\\ Sau \(4,5\) giờ thì số vòng tròn mà vệ tinh \(X\) di chuyển được là \(\frac{{4,5}}{2} = \frac{9}{4}\) (vòng)
Số đo góc lượng giác thu được là \(\frac{9}{4} \cdot 2\pi = \frac{{9\pi }}{2}\) (rad).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({u_n}\)là số tiền máy tính sử dụng năm thứ n.
Giá trị máy tính giảm \(10\% \) so với giá trị của nó trong năm liền trước đó.
\( \Rightarrow \left( {{u_n}} \right)\)là CSN với \({u_1} = 680\)nghìn đồng và công bội \(q = 1 - 0,1 = 0,9\) nghìn đồng.
Giá trị của chiếc máy tính sau 7 năm sử dụng \({u_8} = 680.0,{9^7} \approx 325,242\)nghìn đồng.
Lời giải
Tứ giác \(ABCD\) là hình chữ nhật nên \({x_C} = {x_B}\,,\,{x_D} = {x_A}\,,\,{y_A} = {y_B}\).
Khi đó: \({y_A} = {y_B} \Leftrightarrow \sin \left( {{x_A}} \right) = \sin \left( {{x_B}} \right) \Leftrightarrow \sin \left( {{x_D}} \right) = \sin \left( {{x_C}} \right) \Leftrightarrow \left[ \begin{array}{l}{x_D} = {x_C} + k2\pi \\{x_D} = \pi - {x_C} + k2\pi \end{array} \right.\)
Do xét trên đoạn \(\left[ {0;\pi } \right]\) và \({x_C} - {x_D} = CD = \frac{{2\pi }}{3}\) nên ta có hệ:
\(\left\{ \begin{array}{l}{x_C} - {x_D} = \frac{{2\pi }}{3}\\{x_C} + {x_D} = \pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = \frac{{5\pi }}{6}\\{x_D} = \frac{\pi }{6}\end{array} \right.\). Vậy \(BC = {y_B} = \sin \left( {{x_B}} \right) = \sin \left( {{x_C}} \right) = \sin \left( {\frac{{5\pi }}{6}} \right) = \frac{1}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hai điểm \(A\) và \(B\) thuộc đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {0;\pi } \right]\). Các điểm \(C,D\) thuộc trục \(Ox\) sao cho tứ giác \(ABCD\) là hình chữ nhật và \(CD = \frac{{2\pi }}{3}\). Tính độ dài đoạn \(BC\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1761532776.png)