PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 2.
Cho hai điểm \(A\) và \(B\) thuộc đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {0;\pi } \right]\). Các điểm \(C,D\) thuộc trục \(Ox\) sao cho tứ giác \(ABCD\) là hình chữ nhật và \(CD = \frac{{2\pi }}{3}\). Tính độ dài đoạn \(BC\).
![Cho hai điểm \(A\) và \(B\) thuộc đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {0;\pi } \right]\). Các điểm \(C,D\) thuộc trục \(Ox\) sao cho tứ giác \(ABCD\) là hình chữ nhật và \(CD = \frac{{2\pi }}{3}\). Tính độ dài đoạn \(BC\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1761532776.png)
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 2.
Cho hai điểm \(A\) và \(B\) thuộc đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {0;\pi } \right]\). Các điểm \(C,D\) thuộc trục \(Ox\) sao cho tứ giác \(ABCD\) là hình chữ nhật và \(CD = \frac{{2\pi }}{3}\). Tính độ dài đoạn \(BC\).
![Cho hai điểm \(A\) và \(B\) thuộc đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {0;\pi } \right]\). Các điểm \(C,D\) thuộc trục \(Ox\) sao cho tứ giác \(ABCD\) là hình chữ nhật và \(CD = \frac{{2\pi }}{3}\). Tính độ dài đoạn \(BC\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1761532776.png)
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Tứ giác \(ABCD\) là hình chữ nhật nên \({x_C} = {x_B}\,,\,{x_D} = {x_A}\,,\,{y_A} = {y_B}\).
Khi đó: \({y_A} = {y_B} \Leftrightarrow \sin \left( {{x_A}} \right) = \sin \left( {{x_B}} \right) \Leftrightarrow \sin \left( {{x_D}} \right) = \sin \left( {{x_C}} \right) \Leftrightarrow \left[ \begin{array}{l}{x_D} = {x_C} + k2\pi \\{x_D} = \pi - {x_C} + k2\pi \end{array} \right.\)
Do xét trên đoạn \(\left[ {0;\pi } \right]\) và \({x_C} - {x_D} = CD = \frac{{2\pi }}{3}\) nên ta có hệ:
\(\left\{ \begin{array}{l}{x_C} - {x_D} = \frac{{2\pi }}{3}\\{x_C} + {x_D} = \pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = \frac{{5\pi }}{6}\\{x_D} = \frac{\pi }{6}\end{array} \right.\). Vậy \(BC = {y_B} = \sin \left( {{x_B}} \right) = \sin \left( {{x_C}} \right) = \sin \left( {\frac{{5\pi }}{6}} \right) = \frac{1}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({u_n}\)là số tiền máy tính sử dụng năm thứ n.
Giá trị máy tính giảm \(10\% \) so với giá trị của nó trong năm liền trước đó.
\( \Rightarrow \left( {{u_n}} \right)\)là CSN với \({u_1} = 680\)nghìn đồng và công bội \(q = 1 - 0,1 = 0,9\) nghìn đồng.
Giá trị của chiếc máy tính sau 7 năm sử dụng \({u_8} = 680.0,{9^7} \approx 325,242\)nghìn đồng.
Lời giải
|
a) |
S |
b) |
Đ |
c) |
Đ |
d) |
Đ |
(Đúng) Quãng đường vệ tinh \(X\) chuyển động được sau \(1\) giờ là \(28902,65\) km (làm tròn đến hàng phần trăm)
(Vì): Đúng.\\ Một vòng di chuyển của \(X\) chính là chu vi đường tròn
\(C = 2\pi R = 2\pi \cdot 9200 = 18400\pi \)(km)
Sau \(1\) giờ, vệ tinh di chuyển nửa đường tròn với quãng đường là
\(\frac{1}{2}C = 9200\pi \approx 28902,65\)(km).
(Đúng) Quãng đường vệ tinh \(X\) chuyển động được sau \(1,5\) giờ là \(43353,98\) km (làm tròn đến hàng phần trăm)
(Vì): Đúng.\\ Sau \(1,5\) giờ, vệ tinh di chuyển được \(\frac{{1,5 \cdot 1}}{2}\) đường tròn (hay \(\frac{3}{4}\) đường tròn), quãng đường là \(\frac{3}{4}C = \frac{3}{4} \cdot 18400\pi = 13800\pi \approx 43353,98\) km.
(Sai) Sau khoảng \(5,3\) giờ thì \(X\) di chuyển được quãng đường \(240000\) km
(Vì): Sai.\\ Số giờ để vệ tinh \(X\) thực hiện quãng đường \(240000\) km là \(\frac{{240000}}{{9200\pi }} \approx 8,3\) (giờ)
(Đúng) Giả sử vệ tinh di chuyển theo chiều dương của đường tròn, sau \(4,5\) giờ thì vệ tinh vẽ nên một góc \(\frac{{9\pi }}{2}\) rad
(Vì): Đúng.\\ Sau \(4,5\) giờ thì số vòng tròn mà vệ tinh \(X\) di chuyển được là \(\frac{{4,5}}{2} = \frac{9}{4}\) (vòng)
Số đo góc lượng giác thu được là \(\frac{9}{4} \cdot 2\pi = \frac{{9\pi }}{2}\) (rad).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.