Câu hỏi:

27/10/2025 570 Lưu

PHẦN IV. Câu hỏi tự luận. Thí sinh trình bày lời giải vào giấy làm bài.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,P\) lần lượt là trung điểm của các cạnh \(SA\) và \(SC\). Điểm \(N\) thuộc cạnh \(SB\) sao cho \(\frac{{SN}}{{SB}} = \frac{2}{3}\). Gọi \(Q\) là giao điểm của \(SD\) và mặt phẳng \((MNP)\). Tính tỉ số \(\frac{{SQ}}{{SD}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bìn (ảnh 1)

Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) là giao điểm của \(MP\) và \(SO\) thì \(Q\) là giao điểm của \(NI\) với \(SD\). \(I\) là trung điểm của \(SO\).

Đặt \(\frac{{SD}}{{SQ}} = x\). Do \(2\overrightarrow {SO}  = \overrightarrow {SB}  + \overrightarrow {SD} \) nên \(4\overrightarrow {SI}  = \frac{3}{2}\overrightarrow {SN}  + x\overrightarrow {SQ} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

\(\begin{array}{l}x = {x_A} + {x_B} = 5\cos \left( {50\pi t - \frac{\pi }{6}} \right) + 5\cos \left( {50\pi t + \frac{\pi }{3}} \right) = 2 \cdot 5\cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\cos \left( { - \frac{\pi }{4}} \right){\rm{ }}\\ \Rightarrow {\rm{ }}x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\end{array}\)

Ta có \(x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right) \le 5\sqrt 2 \). Vậy sóng tổng hợp cao nhất khi \(\cos \left( {50\pi t + \frac{\pi }{{12}}} \right) = 1 \Leftrightarrow 50\pi t + \frac{\pi }{{12}} = k2\pi  \Leftrightarrow t =  - \frac{1}{{600}} + \frac{k}{{25}}\) (giây) với \(k \in {\mathbb{N}^*}\).

Lời giải

a)

S

b)

S

c)

S

d)

Đ

 


(Đúng) Đường thẳng \(BC\) song song với \((SAD\)
(Vì): Ta có \(\left\{ {\begin{array}{*{20}{l}}{BC\not  \subset (SAD)}\\{BC\parallel AD}\\{AD \subset (SAD)}\end{array}} \right.\) nên \(BC\parallel (SAD)\).
(Sai) \(MO\) là giao tuyến của \((SAC)\) và \((SBD)\)
(Vì):
\( \bullet \) Ta có \(S \in (SBD) \cap (SAC)(1)\).
\( \bullet \) Mà \(\left\{ {\begin{array}{*{20}{l}}{O \in AC \subset (SAC)}\\{O \in BD \subset (SBD)}\end{array}} \right. \Rightarrow O \in (SBD) \cap (SAC)(2)\).
Từ \((1)\) và \((2)\), suy ra \((SBD) \cap (SAC) = SO\).
(Sai) Đường thẳng \(BM\) song song với \((SAD)\)
(Vì):

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 1)


\(\left\{ {\begin{array}{*{20}{l}}{S \in (SBC) \cap (SAD)}\\{BC \subset (SBC),AD \subset (SAD)}\\{BC\parallel AD}\end{array}} \right. \Rightarrow (SBC) \cap (SAD) = d\parallel BC\parallel AD\;(d{\rm{ di qua }}S)\).
Trong \((SBC)\), gọi \(I\) là giao điểm của \(BM\) và \(d\). Khi đó
\(\left\{ {\begin{array}{*{20}{l}}{I \in BM}\\{I \in d \subset (SAD)}\end{array}} \right. \Rightarrow BM \cap (SAD) = I\).
(Sai) Gọi \(N\) là điểm thuộc cạnh \(SB\) sao cho \(SN = \frac{1}{3}SB\), khi đó \(N\) là giao điểm của đường thẳng \(SB\) và \((AMD)\)
(Vì):

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 2)


Xét  có \(SO\), \(AM\) là trung tuyến nên gọi \(G\) là giao điểm của \(SO\) và \(AM\) thì \(G\) là trọng tâm của .
Xét  có \(SO\) là đường trung tuyến và \(SG = 2GO\) nên \(G\) cũng là trọng tâm của .
Trong \((SBD)\), gọi \(J\) là giao điểm của \(DG\) và \(SB\). Khi đó
\(\left\{ {\begin{array}{*{20}{l}}{J \in SB}\\{J \in DG \subset (ADM)}\end{array}} \right. \Rightarrow SB \cap (ADM) = J.\)
Mặt khác, \(G\) là trọng tâm của  nên \(J\) là trung điểm của \(SB \Rightarrow SJ = \frac{1}{2}SB\).
Mà \(SN = \frac{1}{3}SB\) nên \(N\) và \(J\) là hai điểm phân biệt.

Câu 4

A. Song song hoặc cắt nhau.                          
B. Chéo nhau.              
C. Cắt nhau.                                                   
D. Song song.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP