PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 2.
Trong buổi phát động trồng cây, trường X trồng được 12 hàng cây, hàng đầu tiên có 2 cây, các hàng liền sau mỗi hàng gấp đôi hàng trước đó. Hỏi trường X trồng được bao nhiêu cây?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 2.
Trong buổi phát động trồng cây, trường X trồng được 12 hàng cây, hàng đầu tiên có 2 cây, các hàng liền sau mỗi hàng gấp đôi hàng trước đó. Hỏi trường X trồng được bao nhiêu cây?
Quảng cáo
Trả lời:
Gọi \[{u_1},{u_2},...{u_{12}}\] lần lượt là số ghế của dãy ghế thứ nhất, dãy ghế thứ hai,… và dãy ghế số ba mươi. Ta có công thức truy hồi ta có \[{u_n} = 2.{u_{n - 1}}\],\[\left( {n = 2,3,...,12} \right)\].
Ký hiệu:\[{S_7} = {u_1} + {u_2} + ... + {u_{12}}\], theo công thức tổng các số hạng của một cấp số nhân với \[{u_1} = 2\], ta được:
\[{S_{12}} = {u_1}.\frac{{1 - {q^{12}}}}{{1 - q}} = 2.\frac{{1 - {2^{12}}}}{{1 - 2}} = 8192\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mực nước của kênh cao nhất khi \(h\) lớn nhât:
\( \Leftrightarrow \sin \left( {\frac{{\pi t}}{8} + \frac{{5\pi }}{8}} \right) = 1 \Leftrightarrow \frac{\pi }{8}t + \frac{{5\pi }}{8} = \frac{\pi }{2} + k2\pi \Leftrightarrow t = - 1 + 16k\)
Với \(0 < t \le 24\) suy ra \(0 < - 1 + 16k \le 24 \Leftrightarrow \frac{1}{{16}} < k \le \frac{{25}}{{16}}\)
Do \(k \in \mathbb{Z}\) nên \(k = 1\) thỏa mãn. Khi \(k = 1\) thì \(t = 15h\).
Lời giải
Ta có
\(\begin{array}{l}x = {x_A} + {x_B} = 5\cos \left( {50\pi t - \frac{\pi }{6}} \right) + 5\cos \left( {50\pi t + \frac{\pi }{3}} \right) = 2 \cdot 5\cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\cos \left( { - \frac{\pi }{4}} \right){\rm{ }}\\ \Rightarrow {\rm{ }}x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\end{array}\)
Ta có \(x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right) \le 5\sqrt 2 \). Vậy sóng tổng hợp cao nhất khi \(\cos \left( {50\pi t + \frac{\pi }{{12}}} \right) = 1 \Leftrightarrow 50\pi t + \frac{\pi }{{12}} = k2\pi \Leftrightarrow t = - \frac{1}{{600}} + \frac{k}{{25}}\) (giây) với \(k \in {\mathbb{N}^*}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.