Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AD\) là đáy lớn và \(AD = 2BC\). Gọi \(E\) là giao điểm của \(AB\) và \(CD\), \(F\) là trung điểm \(AD\).
a) Giao tuyến của \((SAC)\) và \((SAD)\) là đường thẳng \(SA\).
b) Giao tuyến của \((SAB)\) và \((SCD)\) là đường thẳng \(SE\).
c) Giao tuyến của \((SAB)\) và \((SFC)\) là đường thẳng \(d'\) đi qua \(S\) và song song cạnh \(CD\).
d) Giao tuyến của \((SAD)\) và \((SBC)\) là đường thẳng \(d\) đi qua \(S\) và song song cạnh \(CD\).
a) Giao tuyến của \((SAC)\) và \((SAD)\) là đường thẳng \(SA\).
b) Giao tuyến của \((SAB)\) và \((SCD)\) là đường thẳng \(SE\).
c) Giao tuyến của \((SAB)\) và \((SFC)\) là đường thẳng \(d'\) đi qua \(S\) và song song cạnh \(CD\).
d) Giao tuyến của \((SAD)\) và \((SBC)\) là đường thẳng \(d\) đi qua \(S\) và song song cạnh \(CD\).
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
|
a) |
Đ |
b) |
Đ |
c) |
S |
d) |
S |
(Đúng) Giao tuyến của \((SAC)\) và \((SAD)\) là đường thẳng \(SA\)
(Vì): vì \((SAC) \cap (SAD) = SA\).
(Đúng) Giao tuyến của \((SAB)\) và \((SCD)\) là đường thẳng \(SE\)
(Vì): Ta có \(S \in (SAB) \cap (SCD)\). \((1)\)
Mà \(\left\{ {\begin{array}{*{20}{l}}{E \in AB \subset (SAB)}\\{E \in CD \subset (SCD)}\end{array}} \right. \Rightarrow E \in (SAB) \cap (SCD)\). \((2)\)
Từ \((1)\) và \((2) \Rightarrow (SAB) \cap (SCD) = SE\).
(Sai) Giao tuyến của \((SAD)\) và \((SBC)\) là đường thẳng \(d\) đi qua \(S\) và song song cạnh \(CD\)
(Vì):
Ta có
\(\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD\parallel BC}\\{AD \subset (SAD);BC \subset (SBC)}\end{array}} \right. \Rightarrow (SAD) \cap (SBC) = d}\end{array}\)
với \(d\parallel AD\) và đi qua \(S\).
(Sai) Giao tuyến của \((SAB)\) và \((SFC)\) là đường thẳng \(d'\) đi qua \(S\) và song song cạnh \(CD\)
(Vì):
Xét tứ giác \(ABCF\), ta có \(\left\{ {\begin{array}{*{20}{l}}{BC\parallel AF}\\{BC = AF = \frac{{AD}}{2}}\end{array}} \right. \Rightarrow ABCF\) là hình bình hành.
Ta có \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAB) \cap (SCF)}\\{AB\parallel FC}\\{AB \subset (SAB);FC \subset (SCF)}\end{array}} \right. \Rightarrow (SAB) \cap (SCF) = d'\), với \(d'\parallel AB\) và đi qua \(S\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có quãng đường bóng bay bằng tổng quảng đường bóng nảy lên và quãng đường bóng rơi xuống.
Vì mỗi lần bóng nảy lên bằng \(\frac{3}{4}\) lần nảy trước nên ta có tổng quãng đường bóng nảy lên là \[{S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} \right)^2} + 6.{\left( {\frac{3}{4}} \right)^3} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\]
Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \[{u_1} = 6.\frac{3}{4} = \frac{9}{2}\] và công bội \(q = \frac{3}{4}\). Suy ra \({S_1} = \frac{{\frac{9}{2}}}{{1 - \frac{3}{4}}} = 18\).
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên nên là \({S_2} = 6 + 6.\left( {\frac{3}{4}} \right) + 6.{\left( {\frac{3}{4}} \right)^2} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\)
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = 6\) và công bội \(q = \frac{3}{4}\). Suy ra \({S_2} = \frac{6}{{1 - \frac{3}{4}}} = 24\) .
Vậy tổng quãng đường bóng bay là \(S = {S_1} + {S_2} = 18 + 24 = 42\).
Lời giải

Chọn mặt phẳng \(\left( {BCD} \right)\) chứa \(BD\).Trong mặt phẳng \(\left( {ACD} \right)\) gọi \(I = MN \cap CD\).
\(\left\{ \begin{array}{l}I \in MN \subset \left( {OMN} \right)\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {OMN} \right) \cap \left( {BCD} \right)\) \( \Rightarrow OI = \left( {BCD} \right) \cap \left( {OMN} \right)\)
Gọi \(J\) là giao điểm của \(OI\) và \(BD\) trong mặt phẳng \(\left( {BCD} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}J \in BD\\J \in OI \subset \left( {OMN} \right)\end{array} \right.\)\( \Rightarrow J = BD \cap \left( {OMN} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

