Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây đai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài \(150{\rm{\;m}}\). Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy được kéo lên một quãng đường có độ dài bằng \(60\% \) so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa được kéo lên (Hình vẽ).

Tính tổng quãng đường bằng bao nhiêu mét khi mà người đó đi được sau 15 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị)
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây đai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài \(150{\rm{\;m}}\). Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy được kéo lên một quãng đường có độ dài bằng \(60\% \) so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa được kéo lên (Hình vẽ).

Tính tổng quãng đường bằng bao nhiêu mét khi mà người đó đi được sau 15 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị)
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Gọi \({u_1}\left( m \right)\) là quãng đường người chơi rơi xuống ở lần thứ nhất, ta có \({u_1} = 150\); \({v_1}\left( m \right)\) là quãng đường người chơi được kéo lên ở lần thứ nhất, ta có:
\({v_1} = 150.0,6 = 90\)
\({u_2}\left( m \right)\)là quãng đường người chơi rơi xuống ở lần thứ hai, ta có \({u_2} = {v_1} = 0,6{u_1}\); \({v_2}\left( m \right)\) là quãng đường người chơi được kéo lên ở lần thứ hai, ta có:
\({v_2} = 0,6{u_2} = 0,6{v_1}\).
Như vậy, ta có hai cấp số nhân đều có công bội \(0,6\) là: \({u_1},{u_2},..,{u_{15}}\) và \({v_1},{v_2},..,{v_{15}}\) với \({u_1} = 150\) và \({v_1} = 90\).
Ta có:
\({u_1} + {u_2} + ... + {u_{15}} = 150.\left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\); \({v_1} + {v_2} + ... + {v_{10}} = 90.\left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\).
Vậy quãng đường người đó đi được sau 15 lần rơi xuống và lại được kéo lên (tính từ lúc bắt đầu nhảy) là:
\(\left( {{u_1} + {u_2} + ... + {u_{10}}} \right) + \left( {{v_1} + {v_2} + ... + {v_{10}}} \right) = 240.\left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right) \approx 600\left( m \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có quãng đường bóng bay bằng tổng quảng đường bóng nảy lên và quãng đường bóng rơi xuống.
Vì mỗi lần bóng nảy lên bằng \(\frac{3}{4}\) lần nảy trước nên ta có tổng quãng đường bóng nảy lên là \[{S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} \right)^2} + 6.{\left( {\frac{3}{4}} \right)^3} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\]
Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \[{u_1} = 6.\frac{3}{4} = \frac{9}{2}\] và công bội \(q = \frac{3}{4}\). Suy ra \({S_1} = \frac{{\frac{9}{2}}}{{1 - \frac{3}{4}}} = 18\).
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên nên là \({S_2} = 6 + 6.\left( {\frac{3}{4}} \right) + 6.{\left( {\frac{3}{4}} \right)^2} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\)
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = 6\) và công bội \(q = \frac{3}{4}\). Suy ra \({S_2} = \frac{6}{{1 - \frac{3}{4}}} = 24\) .
Vậy tổng quãng đường bóng bay là \(S = {S_1} + {S_2} = 18 + 24 = 42\).
Lời giải

Chọn mặt phẳng \(\left( {BCD} \right)\) chứa \(BD\).Trong mặt phẳng \(\left( {ACD} \right)\) gọi \(I = MN \cap CD\).
\(\left\{ \begin{array}{l}I \in MN \subset \left( {OMN} \right)\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {OMN} \right) \cap \left( {BCD} \right)\) \( \Rightarrow OI = \left( {BCD} \right) \cap \left( {OMN} \right)\)
Gọi \(J\) là giao điểm của \(OI\) và \(BD\) trong mặt phẳng \(\left( {BCD} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}J \in BD\\J \in OI \subset \left( {OMN} \right)\end{array} \right.\)\( \Rightarrow J = BD \cap \left( {OMN} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
