Câu hỏi:

27/10/2025 322 Lưu

PHẦN IV. Câu hỏi tự luận. Thí sinh trình bày lời giải vào giấy làm bài.

Cho tứ diện ABCD. Trên AC,AD lần lượt lấy các điểm M,N sao cho MN không song song với CD. Gọi O là điểm thuộc miền trong tam giác BCD. Tìm giao điểm của đường thẳng BD và mặt phẳng (OMN).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện ABCD. Trên AC,AD lần lượt lấy các điểm M,N sao cho MN không song song với CD. Gọi O là điểm thuộc miền trong tam giác BCD. Tìm giao điểm của đường thẳng BD và mặt phẳng (OMN). (ảnh 1)

Chọn mặt phẳng \(\left( {BCD} \right)\) chứa \(BD\).Trong mặt phẳng \(\left( {ACD} \right)\) gọi \(I = MN \cap CD\).

\(\left\{ \begin{array}{l}I \in MN \subset \left( {OMN} \right)\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {OMN} \right) \cap \left( {BCD} \right)\) \( \Rightarrow OI = \left( {BCD} \right) \cap \left( {OMN} \right)\)

Gọi \(J\) là giao điểm của \(OI\) và \(BD\) trong mặt phẳng \(\left( {BCD} \right)\).

\( \Rightarrow \left\{ \begin{array}{l}J \in BD\\J \in OI \subset \left( {OMN} \right)\end{array} \right.\)\( \Rightarrow J = BD \cap \left( {OMN} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chiều cao của mực nước cao nhất là \(m + a\) khi \({\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = 1\) và thấp nhất bằng \(m - a\) khi \({\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) =  - 1\). Theo giả thiết, ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + a = 16}\\{m - a = 10}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = 13}\\{a = 3.}\end{array}} \right.} \right.\)

Từ câu a ta có công thức: \(h = 13 + 3{\rm{cos}}\left( {\frac{\pi }{{12}}t} \right)\). Do chiều cao của mực nước là 11,5 m nên \(13 + 3{\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = 11,5 \Leftrightarrow {\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) =  - \frac{1}{2}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{\pi }{{12}}t = \frac{{2\pi }}{3} + k2\pi }\\{\frac{\pi }{{12}}t =  - \frac{{2\pi }}{3} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 8 + 24k}\\{t =  - 8 + 24k}\end{array}\left( {k \in \mathbb{Z}} \right).} \right.} \right.\)

Ứng với hai thời điểm trong ngày ta có \(t = 8\left( {{\rm{\;h}}} \right)\) và \(t = 16\) (h).

Tổng của hai thời điểm là \(8 + 16 = 24\)

Lời giải

a)

Đ

b)

Đ

c)

S

d)

S

 


(Đúng) Giao tuyến của \((SAC)\) và \((SAD)\) là đường thẳng \(SA\)
(Vì): vì \((SAC) \cap (SAD) = SA\).
(Đúng) Giao tuyến của \((SAB)\) và \((SCD)\) là đường thẳng \(SE\)
(Vì): Ta có \(S \in (SAB) \cap (SCD)\). \((1)\)
Mà \(\left\{ {\begin{array}{*{20}{l}}{E \in AB \subset (SAB)}\\{E \in CD \subset (SCD)}\end{array}} \right. \Rightarrow E \in (SAB) \cap (SCD)\). \((2)\)
Từ \((1)\) và \((2) \Rightarrow (SAB) \cap (SCD) = SE\).
(Sai) Giao tuyến của \((SAD)\) và \((SBC)\) là đường thẳng \(d\) đi qua \(S\) và song song cạnh \(CD\)
(Vì):
Ta có
\(\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD\parallel BC}\\{AD \subset (SAD);BC \subset (SBC)}\end{array}} \right. \Rightarrow (SAD) \cap (SBC) = d}\end{array}\)
với \(d\parallel AD\) và đi qua \(S\).
(Sai) Giao tuyến của \((SAB)\) và \((SFC)\) là đường thẳng \(d'\) đi qua \(S\) và song song cạnh \(CD\)
(Vì):
Xét tứ giác \(ABCF\), ta có \(\left\{ {\begin{array}{*{20}{l}}{BC\parallel AF}\\{BC = AF = \frac{{AD}}{2}}\end{array}} \right. \Rightarrow ABCF\) là hình bình hành.
Ta có \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAB) \cap (SCF)}\\{AB\parallel FC}\\{AB \subset (SAB);FC \subset (SCF)}\end{array}} \right. \Rightarrow (SAB) \cap (SCF) = d'\), với \(d'\parallel AB\) và đi qua \(S\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP