PHẦN IV. Câu hỏi tự luận. Thí sinh trình bày lời giải vào giấy làm bài.
Cho tứ diện ABCD. Trên AC,AD lần lượt lấy các điểm M,N sao cho MN không song song với CD. Gọi O là điểm thuộc miền trong tam giác BCD. Tìm giao điểm của đường thẳng BD và mặt phẳng (OMN).
PHẦN IV. Câu hỏi tự luận. Thí sinh trình bày lời giải vào giấy làm bài.
Cho tứ diện ABCD. Trên AC,AD lần lượt lấy các điểm M,N sao cho MN không song song với CD. Gọi O là điểm thuộc miền trong tam giác BCD. Tìm giao điểm của đường thẳng BD và mặt phẳng (OMN).
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:

Chọn mặt phẳng \(\left( {BCD} \right)\) chứa \(BD\).Trong mặt phẳng \(\left( {ACD} \right)\) gọi \(I = MN \cap CD\).
\(\left\{ \begin{array}{l}I \in MN \subset \left( {OMN} \right)\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {OMN} \right) \cap \left( {BCD} \right)\) \( \Rightarrow OI = \left( {BCD} \right) \cap \left( {OMN} \right)\)
Gọi \(J\) là giao điểm của \(OI\) và \(BD\) trong mặt phẳng \(\left( {BCD} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}J \in BD\\J \in OI \subset \left( {OMN} \right)\end{array} \right.\)\( \Rightarrow J = BD \cap \left( {OMN} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chiều cao của mực nước cao nhất là \(m + a\) khi \({\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = 1\) và thấp nhất bằng \(m - a\) khi \({\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = - 1\). Theo giả thiết, ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + a = 16}\\{m - a = 10}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = 13}\\{a = 3.}\end{array}} \right.} \right.\)
Từ câu a ta có công thức: \(h = 13 + 3{\rm{cos}}\left( {\frac{\pi }{{12}}t} \right)\). Do chiều cao của mực nước là 11,5 m nên \(13 + 3{\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = 11,5 \Leftrightarrow {\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = - \frac{1}{2}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{\pi }{{12}}t = \frac{{2\pi }}{3} + k2\pi }\\{\frac{\pi }{{12}}t = - \frac{{2\pi }}{3} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 8 + 24k}\\{t = - 8 + 24k}\end{array}\left( {k \in \mathbb{Z}} \right).} \right.} \right.\)
Ứng với hai thời điểm trong ngày ta có \(t = 8\left( {{\rm{\;h}}} \right)\) và \(t = 16\) (h).
Tổng của hai thời điểm là \(8 + 16 = 24\)
Lời giải
|
a) |
Đ |
b) |
Đ |
c) |
S |
d) |
S |
(Đúng) Giao tuyến của \((SAC)\) và \((SAD)\) là đường thẳng \(SA\)
(Vì): vì \((SAC) \cap (SAD) = SA\).
(Đúng) Giao tuyến của \((SAB)\) và \((SCD)\) là đường thẳng \(SE\)
(Vì): Ta có \(S \in (SAB) \cap (SCD)\). \((1)\)
Mà \(\left\{ {\begin{array}{*{20}{l}}{E \in AB \subset (SAB)}\\{E \in CD \subset (SCD)}\end{array}} \right. \Rightarrow E \in (SAB) \cap (SCD)\). \((2)\)
Từ \((1)\) và \((2) \Rightarrow (SAB) \cap (SCD) = SE\).
(Sai) Giao tuyến của \((SAD)\) và \((SBC)\) là đường thẳng \(d\) đi qua \(S\) và song song cạnh \(CD\)
(Vì):
Ta có
\(\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD\parallel BC}\\{AD \subset (SAD);BC \subset (SBC)}\end{array}} \right. \Rightarrow (SAD) \cap (SBC) = d}\end{array}\)
với \(d\parallel AD\) và đi qua \(S\).
(Sai) Giao tuyến của \((SAB)\) và \((SFC)\) là đường thẳng \(d'\) đi qua \(S\) và song song cạnh \(CD\)
(Vì):
Xét tứ giác \(ABCF\), ta có \(\left\{ {\begin{array}{*{20}{l}}{BC\parallel AF}\\{BC = AF = \frac{{AD}}{2}}\end{array}} \right. \Rightarrow ABCF\) là hình bình hành.
Ta có \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAB) \cap (SCF)}\\{AB\parallel FC}\\{AB \subset (SAB);FC \subset (SCF)}\end{array}} \right. \Rightarrow (SAB) \cap (SCF) = d'\), với \(d'\parallel AB\) và đi qua \(S\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

