Nhà bạn An cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là \(200.000\)đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm \(7\% \) so với giá tiền mét khoan ngay trước đó. Hỏi nếu nhà bạn An khoan cái giếng sâu \(30m\) thì hết bao nhiêu tiền (làm tròn đến ngàn nghìn)?
Quảng cáo
Trả lời:
Đặt \({T_n}\left( {n:1 \to 30} \right)\) là giá tiền ở mét khoan thứ \(n\) và \(r = 7\% \). Ta có:
\({T_2} = {T_1} + {T_1}.r = {T_1}.\left( {1 + r} \right)\)
\({T_3} = {T_2} + {T_2}.r = {T_2}\left( {1 + r} \right) = {T_1}.{\left( {1 + r} \right)^2}\)
…
…
\({T_{30}} = {T_1}.{\left( {1 + r} \right)^{29}}\)
Dễ thấy dãy số \(\left( {{T_n}} \right)\) là cấp số nhân với \({T_1} = 200.000\) và công bội \(Q = 1 + r = 1 + 7\% = 1,07\).
Do đó số tiền cần tính là: \({S_{30}} = \frac{{{T_1}.\left( {{q^{30}} - 1} \right)}}{{q - 1}} = 18892157,26\).
Làm tròn đến hàng nghin được: \({S_{30}} = 18892000\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Dãy số \(\left( {{u_n}} \right)\)với \({u_n} = 4n\)có \({u_{n + 1}} = 4\left( {n + 1} \right) = 4n + 4\)\( \Rightarrow {u_{n + 1}} = {u_n} + 4\), \(\forall n \in {\mathbb{N}^*}\)\( \Rightarrow \)dãy số \(\left( {{u_n}} \right)\)là cấp số cộng với công sai \(d = 4\).
Dãy số \(\left( {{v_n}} \right)\)với \({v_n} = 2{n^2} + 1\)có \({v_1} = 3\), \({v_2} = 9\), \({v_3} = 19\)nên dãy số \(\left( {{v_n}} \right)\)không là cấp số cộng.
Dãy số \(\left( {{w_n}} \right)\)với \({w_n} = \frac{n}{3} - 7\)có \({w_{n + 1}} = \frac{{n + 1}}{3} - 7\)\( = \frac{n}{3} - 7 + \frac{1}{3}\)\( \Rightarrow {u_{n + 1}} = {u_n} + \frac{1}{3}\), \(\forall n \in {\mathbb{N}^*}\)\( \Rightarrow \)dãy số \(\left( {{w_n}} \right)\)là cấp số cộng với công sai \(d = \frac{1}{3}\).
Dãy số \(\left( {{t_n}} \right)\)với \({t_n} = \sqrt[{}]{5} - 5n\)có \({t_{n + 1}} = \sqrt[{}]{5} - 5n - 5\)\( \Rightarrow {u_{n + 1}} = {u_n} - 5\), \(\forall n \in {\mathbb{N}^*}\)\( \Rightarrow \)dãy số \(\left( {{w_n}} \right)\)là cấp số cộng với công sai \(d = - 5\).
Vậy có \(3\)dãy số là cấp số cộng.
Lời giải
Sau 3 năm làm việc có 12 quý.
Lương anh Bình nhận được trong quý 1 là \({u_1} = 6.3 = 18\) (triệu đồng)
Lương anh Bình nhận được trong quý 2 là \({u_2} = {u_1} + {u_1}.5\% = {u_1}.1,05\)
Lương anh Bình nhận được trong quý 3 là \({u_3} = {u_2} + {u_2}.5\% = {u_2}.1,05\)
Lập luận tương tự như vậy thì lương anh Bình nhận được trong quý 12 là \({u_{12}} = {u_{11}}.1,05\).
Như vậy, Lương anh Bình nhận được từ quý 1 đến quý 12 là \({u_1},\,{u_2},\,...,{u_{12}}\) lập thành một cấp số nhân có số hạng đầu \({u_1} = 18\) và công bội \(q = 1,05\).
Do đó tổng lương mà anh Bình nhận được sau 3 năm làm việc là \({S_{12}} = {u_1} + {u_2} + ... + {u_{12}} = 18.\left( {\frac{{1 - 1,{{05}^{12}}}}{{1 - 1,05}}} \right) \approx 286,5\) (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.