PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình bình hành \(ABCD\) và \(ABEF\) nằm ở hai mặt phẳng khác nhau. Gọi \(M\) là trọng tâm . Gọi \((P)\) là mặt phẳng đi qua \(M\) và song song với mặt \((ADF)\). Lấy \(N\) là giao điểm của \((P)\) và \(AC\).
a) \(\frac{{AN}}{{NC}} = 3\).
b) \(FD\parallel EC\).
c) \(EFDC\)là hình thang.
d) \((ADF)\parallel (BCE)\).
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình bình hành \(ABCD\) và \(ABEF\) nằm ở hai mặt phẳng khác nhau. Gọi \(M\) là trọng tâm . Gọi \((P)\) là mặt phẳng đi qua \(M\) và song song với mặt \((ADF)\). Lấy \(N\) là giao điểm của \((P)\) và \(AC\).a) \(\frac{{AN}}{{NC}} = 3\).
b) \(FD\parallel EC\).
c) \(EFDC\)là hình thang.
d) \((ADF)\parallel (BCE)\).
Quảng cáo
Trả lời:
|
a) |
S |
b) |
Đ |
c) |
Đ |
d) |
Đ |
(Đúng) \(EFDC\) là hình thang
(Vì): Đúng.
Do \(ABCD\) và \(ABEF\) là các hình bình hành nên \(\left\{ {\begin{array}{*{20}{l}}{EF\parallel CD(\parallel AB)}\\{EF = CD( = AB)}\end{array}} \right.\) suy ra \(EFDC\) là hình bình hành.
(Đúng) \(FD\parallel EC\)
(Vì): Đúng.
Do \(EFDC\) là hình bình hành nên \(FD\parallel EC\).
(Đúng) \((ADF)\parallel (BCE)\)
(Vì): Đúng.
Do \(\left\{ {\begin{array}{*{20}{l}}{AD\parallel BC \subset (BCE)}\\{AF\parallel BE \subset (BCE)}\\{AD,AF \subset (ADF)}\\{AD \cap AF = A}\end{array}} \right. \Rightarrow (ADF)\parallel (BCE)\).
(Sai) \(\frac{{AN}}{{NC}} = 3\)
(Vì): Đúng.
Vẽ mp\((P)\) chứa \(M\) và \((P)\parallel (ADF)\).
Trong \((ABEF)\) kẻ \(IJ\parallel AF\) qua \(M\) với \(I \in AB\), \(J \in EF\).
Từ \(I\) kẻ \(IK\parallel AD\) với \(K \in CD\).
Nối \(J\) với \(K\).
Ta được \((P)\) cắt \(AB\), \(AC\), \(CD\), \(EF\) lần lượt tại \(I\), \(N\), \(K\), \(J\).
Gọi \(Q\) là trung điểm của \(BE\), mà \(M\) là trọng tâm nên \(AM = 2MQ\).
Mà \(MI\parallel AF\parallel BE\) suy ra \(\frac{{AM}}{{QM}} = \frac{{AI}}{{IB}} = 2\).(1)
Lại có \(\frac{{AI}}{{BI}} = \frac{{AN}}{{NC}}\) do \(IN\parallel BC\).(2)
Từ (1) và (2) suy ra \(\frac{{AN}}{{NC}} = 2\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Dãy số \(\left( {{u_n}} \right)\)với \({u_n} = 4n\)có \({u_{n + 1}} = 4\left( {n + 1} \right) = 4n + 4\)\( \Rightarrow {u_{n + 1}} = {u_n} + 4\), \(\forall n \in {\mathbb{N}^*}\)\( \Rightarrow \)dãy số \(\left( {{u_n}} \right)\)là cấp số cộng với công sai \(d = 4\).
Dãy số \(\left( {{v_n}} \right)\)với \({v_n} = 2{n^2} + 1\)có \({v_1} = 3\), \({v_2} = 9\), \({v_3} = 19\)nên dãy số \(\left( {{v_n}} \right)\)không là cấp số cộng.
Dãy số \(\left( {{w_n}} \right)\)với \({w_n} = \frac{n}{3} - 7\)có \({w_{n + 1}} = \frac{{n + 1}}{3} - 7\)\( = \frac{n}{3} - 7 + \frac{1}{3}\)\( \Rightarrow {u_{n + 1}} = {u_n} + \frac{1}{3}\), \(\forall n \in {\mathbb{N}^*}\)\( \Rightarrow \)dãy số \(\left( {{w_n}} \right)\)là cấp số cộng với công sai \(d = \frac{1}{3}\).
Dãy số \(\left( {{t_n}} \right)\)với \({t_n} = \sqrt[{}]{5} - 5n\)có \({t_{n + 1}} = \sqrt[{}]{5} - 5n - 5\)\( \Rightarrow {u_{n + 1}} = {u_n} - 5\), \(\forall n \in {\mathbb{N}^*}\)\( \Rightarrow \)dãy số \(\left( {{w_n}} \right)\)là cấp số cộng với công sai \(d = - 5\).
Vậy có \(3\)dãy số là cấp số cộng.
Lời giải
Sau 3 năm làm việc có 12 quý.
Lương anh Bình nhận được trong quý 1 là \({u_1} = 6.3 = 18\) (triệu đồng)
Lương anh Bình nhận được trong quý 2 là \({u_2} = {u_1} + {u_1}.5\% = {u_1}.1,05\)
Lương anh Bình nhận được trong quý 3 là \({u_3} = {u_2} + {u_2}.5\% = {u_2}.1,05\)
Lập luận tương tự như vậy thì lương anh Bình nhận được trong quý 12 là \({u_{12}} = {u_{11}}.1,05\).
Như vậy, Lương anh Bình nhận được từ quý 1 đến quý 12 là \({u_1},\,{u_2},\,...,{u_{12}}\) lập thành một cấp số nhân có số hạng đầu \({u_1} = 18\) và công bội \(q = 1,05\).
Do đó tổng lương mà anh Bình nhận được sau 3 năm làm việc là \({S_{12}} = {u_1} + {u_2} + ... + {u_{12}} = 18.\left( {\frac{{1 - 1,{{05}^{12}}}}{{1 - 1,05}}} \right) \approx 286,5\) (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.