Câu hỏi:

04/11/2025 9 Lưu

Cấp số cộng \(\left( {{u_n}} \right)\)\({u_1} = 3\) và tổng 20 số hạng đầu tiên \({S_{20}} = 440\). Công sai \(d\) của cấp số cộng là

A. \(d = 1\).             
B. \(d = 2\).             
C. \(d = \frac{3}{2}\).                                                                 
D. \(d = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B

Ta có: \({S_{20}} = \frac{{20}}{2}\left( {2{u_1} + 19d} \right) = 10\left( {3.2 + 19d} \right)\)

\( \Rightarrow d = \frac{1}{{19}}\left( {\frac{{{S_{20}}}}{{10}} - 6} \right) = \frac{1}{{19}}\left( {\frac{{440}}{{10}} - 6} \right) = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

a) Ta có: \({v_n} = {u_n} + 3 \Rightarrow {v_{n + 1}} = {u_{n + 1}} + 3\)

Xét \(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{{u_{n + 1}} + 3}}{{{u_n} + 3}} = \frac{{4{u_n} + 9 + 3}}{{{u_n} + 3}} = \frac{{4\left( {{u_n} + 3} \right)}}{{{u_n} + 3}} = 4 \Rightarrow \left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = 4\)\({v_1} = {u_1} + 3 = 2 + 3 = 5\).

\( \Rightarrow {v_n} = {v_1}.{q^{n - 1}} = {5.4^{n - 1}}\).

Vậy cấp số nhân \(\left( {{v_n}} \right)\) có số hạng tổng quát \({v_n} = {5.4^{n - 1}}\).

b) Gọi \[{T_n}\] là tổng của \(n\) số hạng đầu tiên của cấp số nhân \(\left( {{v_n}} \right)\)\({S_n}\) là tổng của \(n\) số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\). Khi đó \({T_n} = {v_1} + {v_2} + ... + {v_n}\)\({S_n} = {u_1} + {u_2} + ... + {u_n}\).

Ta có: \({T_n} = {v_1} + {v_2} + ... + {v_n} = \left( {{u_1} + 3} \right) + \left( {{u_2} + 3} \right) + ... + \left( {{u_n} + 3} \right)\)

\( = \left( {{u_1} + {u_2} + ... + {u_n}} \right) + 3n = {S_n} + 3n\)

\( \Rightarrow {S_n} = {T_n} - 3n\)

\( \Rightarrow {S_{10}} = {T_{10}} - 3.10 = \frac{{{v_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} - 3.10 = \frac{{5\left( {1 - {4^{10}}} \right)}}{{1 - 4}} - 30 = 1747595\).

Vậy tổng 10 số hạng đầu tiên của \(\left( {{u_n}} \right)\) là 1 747 595.

Lời giải

Hướng dẫn giải:

Ta có \(\left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 3 - 4{\cos ^2}x\)

\( \Leftrightarrow \left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 4{\sin ^2}x - 1\)

\[ \Leftrightarrow \left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = \left( {2\sin x - 1} \right)\left( {2\sin x + 1} \right)\]

\[ \Leftrightarrow \left( {2\sin x - 1} \right)\left[ {\left( {3\cos 2x + 2\sin x - m} \right) - \left( {2\sin x + 1} \right)} \right] = 0\]

\[ \Leftrightarrow \left( {2\sin x - 1} \right)\left[ {3\cos 2x - \left( {m + 1} \right)} \right] = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}2\sin x - 1 = 0\\3\cos 2x - \left( {m + 1} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin x = \frac{1}{2}\\\cos 2x = \frac{{m + 1}}{3}\end{array} \right.\]

Xét \(\sin x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\). Khi đó trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) có 1 nghiệm \(x = \frac{\pi }{6}\). Như vậy, để phương trình có 3 nghiệm nằm trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) thì phương trình \[\cos 2x = \frac{{m + 1}}{3}\] có 2 nghiệm khác \(\frac{\pi }{6}\) trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).

Xét hàm số \(y = \cos 2x\) trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) có bảng biến thiên như sau:

Cho phương trình \(\left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 3 - 4{\cos ^2}x\). Tìm tất cả các giá tr (ảnh 1)

Như vậy, để phương trình \[\cos 2x = \frac{{m + 1}}{3}\] có 2 nghiệm phân biệt khác \(\frac{\pi }{6}\) thì:

\(\left\{ \begin{array}{l}0 \le \frac{{m + 1}}{3} < 1\\\frac{{m + 1}}{3} \ne \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 \le m < 2\\m \ne \frac{1}{2}\end{array} \right.\).

Vậy \(m \in \left[ { - 1;2} \right)\backslash \left\{ {\frac{1}{2}} \right\}\) thoả mãn đề bài.

 

Câu 4

A. \(\frac{2}{3}\).  
B. \(\frac{1}{2}\).    
C.\( - \frac{1}{2}\).                                
D.\(\frac{1}{{\sqrt 2 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 50.                       
B. 70.                       
C. 30.                                                    
D. 80.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(AM\) với \(M\) là trung điểm \(AB\).                            
B. \(AH\) với \(H\) là hình chiếu của \(B\) trên \(CD\).
C. \(AN\) với \(N\) là trung điểm \(CD\).                              
D. \(AK\) với \(K\) là hình chiếu của \(C\) trên \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.,k \in \mathbb{Z}\).                    
B. \(\left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.,k \in \mathbb{Z}\).                 
C. \(x = \alpha + k\pi ,k \in \mathbb{Z}\).                        
D. \(x = \frac{\alpha }{2} + k\pi ,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP