Câu hỏi:

04/11/2025 11 Lưu

Cho dãy số \( - 1; - 1; - 1; - 1; - 1;...\) Khẳng định nào sau đây là đúng?

A. Dãy số này không phải là cấp số nhân.                             
B. Dãy số là cấp số nhân với \({u_1} = - 1;q = 1\).              
C. Số hạng tổng quát \({u_n} = {\left( { - 1} \right)^n}\).   
D. Dãy số là dãy giảm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B

Các số hạng trong dãy giống nhau nên dãy số là cấp số nhân với \({u_1} = - 1\); \(q = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Ta có \(\left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 3 - 4{\cos ^2}x\)

\( \Leftrightarrow \left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 4{\sin ^2}x - 1\)

\[ \Leftrightarrow \left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = \left( {2\sin x - 1} \right)\left( {2\sin x + 1} \right)\]

\[ \Leftrightarrow \left( {2\sin x - 1} \right)\left[ {\left( {3\cos 2x + 2\sin x - m} \right) - \left( {2\sin x + 1} \right)} \right] = 0\]

\[ \Leftrightarrow \left( {2\sin x - 1} \right)\left[ {3\cos 2x - \left( {m + 1} \right)} \right] = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}2\sin x - 1 = 0\\3\cos 2x - \left( {m + 1} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin x = \frac{1}{2}\\\cos 2x = \frac{{m + 1}}{3}\end{array} \right.\]

Xét \(\sin x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\). Khi đó trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) có 1 nghiệm \(x = \frac{\pi }{6}\). Như vậy, để phương trình có 3 nghiệm nằm trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) thì phương trình \[\cos 2x = \frac{{m + 1}}{3}\] có 2 nghiệm khác \(\frac{\pi }{6}\) trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).

Xét hàm số \(y = \cos 2x\) trong khoảng \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) có bảng biến thiên như sau:

Cho phương trình \(\left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 3 - 4{\cos ^2}x\). Tìm tất cả các giá tr (ảnh 1)

Như vậy, để phương trình \[\cos 2x = \frac{{m + 1}}{3}\] có 2 nghiệm phân biệt khác \(\frac{\pi }{6}\) thì:

\(\left\{ \begin{array}{l}0 \le \frac{{m + 1}}{3} < 1\\\frac{{m + 1}}{3} \ne \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 \le m < 2\\m \ne \frac{1}{2}\end{array} \right.\).

Vậy \(m \in \left[ { - 1;2} \right)\backslash \left\{ {\frac{1}{2}} \right\}\) thoả mãn đề bài.

 

Lời giải

Hướng dẫn giải:

a) Ta có: \({v_n} = {u_n} + 3 \Rightarrow {v_{n + 1}} = {u_{n + 1}} + 3\)

Xét \(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{{u_{n + 1}} + 3}}{{{u_n} + 3}} = \frac{{4{u_n} + 9 + 3}}{{{u_n} + 3}} = \frac{{4\left( {{u_n} + 3} \right)}}{{{u_n} + 3}} = 4 \Rightarrow \left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = 4\)\({v_1} = {u_1} + 3 = 2 + 3 = 5\).

\( \Rightarrow {v_n} = {v_1}.{q^{n - 1}} = {5.4^{n - 1}}\).

Vậy cấp số nhân \(\left( {{v_n}} \right)\) có số hạng tổng quát \({v_n} = {5.4^{n - 1}}\).

b) Gọi \[{T_n}\] là tổng của \(n\) số hạng đầu tiên của cấp số nhân \(\left( {{v_n}} \right)\)\({S_n}\) là tổng của \(n\) số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\). Khi đó \({T_n} = {v_1} + {v_2} + ... + {v_n}\)\({S_n} = {u_1} + {u_2} + ... + {u_n}\).

Ta có: \({T_n} = {v_1} + {v_2} + ... + {v_n} = \left( {{u_1} + 3} \right) + \left( {{u_2} + 3} \right) + ... + \left( {{u_n} + 3} \right)\)

\( = \left( {{u_1} + {u_2} + ... + {u_n}} \right) + 3n = {S_n} + 3n\)

\( \Rightarrow {S_n} = {T_n} - 3n\)

\( \Rightarrow {S_{10}} = {T_{10}} - 3.10 = \frac{{{v_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} - 3.10 = \frac{{5\left( {1 - {4^{10}}} \right)}}{{1 - 4}} - 30 = 1747595\).

Vậy tổng 10 số hạng đầu tiên của \(\left( {{u_n}} \right)\) là 1 747 595.

Câu 4

A. \(\frac{2}{3}\).  
B. \(\frac{1}{2}\).    
C.\( - \frac{1}{2}\).                                
D.\(\frac{1}{{\sqrt 2 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 50.                       
B. 70.                       
C. 30.                                                    
D. 80.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 36.                       
B. 5.                         
C. \(\frac{{13}}{2}\).                                
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(AM\) với \(M\) là trung điểm \(AB\).                            
B. \(AH\) với \(H\) là hình chiếu của \(B\) trên \(CD\).
C. \(AN\) với \(N\) là trung điểm \(CD\).                              
D. \(AK\) với \(K\) là hình chiếu của \(C\) trên \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP