Câu hỏi:

04/11/2025 49 Lưu

Cho tứ diện \(ABCD\), \(G\) là trọng tâm của tam giác \(BCD\). Giao tuyến giữa mặt phẳng \(\left( {ACD} \right)\) và mặt phẳng \(\left( {GAB} \right)\)

A. \(AM\) với \(M\) là trung điểm \(AB\).                            
B. \(AH\) với \(H\) là hình chiếu của \(B\) trên \(CD\).
C. \(AN\) với \(N\) là trung điểm \(CD\).                              
D. \(AK\) với \(K\) là hình chiếu của \(C\) trên \(BD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Hướng dẫn giải:  Đáp án đúng là: C (ảnh 1)

Gọi \(N\) là trung điểm \(CD\), khi đó \(N \in BG\) (do \(G\) là trọng tâm tam giác \(BCD\)).

\( \Rightarrow N \in \left( {GAB} \right)\), mà \(N \in \left( {ACD} \right)\) nên \(N\) là điểm chung giữa mặt phẳng \(\left( {GAB} \right)\) và mặt phẳng \(\left( {ACD} \right)\).

\(A\) là điểm chung giữa mặt phẳng \(\left( {GAB} \right)\) và mặt phẳng \(\left( {ACD} \right)\).

\( \Rightarrow AN\) là giao tuyến giữa mặt phẳng \(\left( {GAB} \right)\) và mặt phẳng \(\left( {ACD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

a) Ta có: \({v_n} = {u_n} + 3 \Rightarrow {v_{n + 1}} = {u_{n + 1}} + 3\)

Xét \(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{{u_{n + 1}} + 3}}{{{u_n} + 3}} = \frac{{4{u_n} + 9 + 3}}{{{u_n} + 3}} = \frac{{4\left( {{u_n} + 3} \right)}}{{{u_n} + 3}} = 4 \Rightarrow \left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = 4\)\({v_1} = {u_1} + 3 = 2 + 3 = 5\).

\( \Rightarrow {v_n} = {v_1}.{q^{n - 1}} = {5.4^{n - 1}}\).

Vậy cấp số nhân \(\left( {{v_n}} \right)\) có số hạng tổng quát \({v_n} = {5.4^{n - 1}}\).

b) Gọi \[{T_n}\] là tổng của \(n\) số hạng đầu tiên của cấp số nhân \(\left( {{v_n}} \right)\)\({S_n}\) là tổng của \(n\) số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\). Khi đó \({T_n} = {v_1} + {v_2} + ... + {v_n}\)\({S_n} = {u_1} + {u_2} + ... + {u_n}\).

Ta có: \({T_n} = {v_1} + {v_2} + ... + {v_n} = \left( {{u_1} + 3} \right) + \left( {{u_2} + 3} \right) + ... + \left( {{u_n} + 3} \right)\)

\( = \left( {{u_1} + {u_2} + ... + {u_n}} \right) + 3n = {S_n} + 3n\)

\( \Rightarrow {S_n} = {T_n} - 3n\)

\( \Rightarrow {S_{10}} = {T_{10}} - 3.10 = \frac{{{v_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} - 3.10 = \frac{{5\left( {1 - {4^{10}}} \right)}}{{1 - 4}} - 30 = 1747595\).

Vậy tổng 10 số hạng đầu tiên của \(\left( {{u_n}} \right)\) là 1 747 595.

Lời giải

Cho tứ giác \(ABCD\) và \(S\) không nằm t (ảnh 1)

a) Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(E\) là giao điểm của \(AC\)\(BI\), khi đó \(SE\) nằm trên mặt phẳng \(\left( {SAC} \right)\).

\(IJ\)\(SE\) cùng nằm trong mặt phẳng \(\left( {SIB} \right)\), nên giao điểm của \(IJ\)\(SE\) chính là giao điểm giữa \(IJ\) và mặt phẳng \(\left( {SAC} \right)\).

Vậy \(K\) là giao điểm giữa \(IJ\)\(SE\).

b) Gọi giao điểm giữa \(AC\)\(BD\)\(F\).

Trong mặt phẳng \(\left( {SBD} \right)\) lấy \(DJ\) giao với \(SF\) tại \(L\).

\(SF\) nằm trên \(\left( {SAC} \right)\) nên \(L\) là giao điểm giữa \(DJ\) và mặt phẳng \(\left( {SAC} \right)\).

c) \(K \in IJ \Rightarrow K \in \left( {OAJ} \right)\), mà \(K \in \left( {SAC} \right)\) nên \(K\) là điểm chung giữa 2 mặt phẳng \(\left( {OAJ} \right)\) và mặt phẳng \(\left( {SAC} \right) \Rightarrow \)\(K\) thuộc giao tuyến giữa 2 mặt phẳng này (1).

Tương tự, \(L \in JD \Rightarrow L \in \left( {OAJ} \right)\), mà \(L \in \left( {SAC} \right)\) nên \(L\) thuộc giao tuyến giữa mặt phẳng \(\left( {OAJ} \right)\) và mặt phẳng \(\left( {SAC} \right)\) (2).

Mặt khác, \(M \in OJ \Rightarrow M \in \left( {OAJ} \right)\), mà \(M \in SC \Rightarrow M \in \left( {SAC} \right) \Rightarrow M\) là điểm chung giữa mặt phẳng \(\left( {OAJ} \right)\) và mặt phẳng \(\left( {SAC} \right)\), kết hợp \(A\) là điểm chung giữa mặt phẳng \(\left( {OAJ} \right)\) và mặt phẳng \(\left( {SAC} \right) \Rightarrow AM\) là giao tuyến giữa mặt phẳng \(\left( {OAJ} \right)\) và mặt phẳng \(\left( {SAC} \right)\) (3).

Từ (1), (2) và (3) suy ra \(A,K,L,M\) thẳng hàng. (đpcm)

Câu 3

A. \(\frac{{56}}{{65}}\).                          
B. \( - \frac{{56}}{{65}}\). 
C. \(\frac{{16}}{{65}}\).                                                      
D. \(\frac{{33}}{{65}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - 285^\circ + k360^\circ ,k \in \mathbb{Z}\).           
B. \(75^\circ + k360^\circ ,k \in \mathbb{Z}\).                     
C. \( - 75^\circ + k360^\circ ,k \in \mathbb{Z}\).             
D. \(50^\circ + k360^\circ ,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 0.                         
B. 1.                         
C. 2.                      
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(a{\rm{//}}c\) thì \(b{\rm{//}}c\).
B. Nếu \(a\) cắt \(c\) thì \(c\) cắt \(b\).
C. Nếu \(A \in a\)\(B \in b\) thì \(a,b\)\(AB\) cùng ở trên một mặt phẳng.
D. Tồn tại duy nhất một mặt phẳng qua \(a\)\(b\).         

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({u_{n + 1}} = {3.3^n}\).                  
B. \({u_{n + 1}} = 3 + {3^n}\).                   
C. \({u_{n + 1}} = 1 + {3^n}\).                                             
D. \({u_{n + 1}} = 3\left( {n + 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP