Câu hỏi:

04/11/2025 16 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) \(\left( {SBC} \right).\) Khẳng định nào sau đây đúng?

A. \(d\) qua \(S\) và song song với \(BC.\)       
B. \(d\) qua \(S\) và song song với \(DC.\)
C. \(d\) qua \(S\) và song song với \(AB.\)       
D. \(d\) qua \(S\) và song song với \(BD.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Lời giải  Đáp án đúng là: A (ảnh 1)

Hai mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right)\) có điểm chung là \(S\)

Ta có \(\left\{ \begin{array}{l}AD \subset \left( {SAD} \right),BC \subset \left( {SBC} \right)\\AD\,{\rm{//}}\,BC\end{array} \right.\) \[ \Rightarrow \] \(\left( {SAD} \right) \cap \left( {SBC} \right) = Sx\,{\rm{//}}\,AD\,{\rm{//}}\,BC\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[x = \frac{\pi }{3}\].                          
B. \[x = \frac{{13\pi }}{3}\].
C. \[x = \frac{\pi }{6}\].                          
D. \[x = \frac{{7\pi }}{3}\].

Lời giải

Lời giải

Đáp án đúng là: A

Ta có \(3\cot x - \sqrt 3 = 0 \Leftrightarrow \cot x = \frac{{\sqrt 3 }}{3} \Leftrightarrow \cot x = \cot \left( {\frac{\pi }{3}} \right) \Leftrightarrow x = \frac{\pi }{3} + k\pi ,\)\(\left( {k \in \mathbb{Z}} \right).\)

Nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi }{3}\).

Câu 2

A. \[ - \frac{1}{3}\]. 
B. \[1\].                    
C. \[\frac{2}{3}\].        
D. \[\frac{1}{3}\].

Lời giải

Đáp án đúng là: D

Ta có \[\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha \tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{1 + 2}} = \frac{1}{3}\].

Câu 3

A. Dãy số tăng, bị chặn.                         
B. Dãy số giảm, bị chặn.
C. Dãy số không tăng không giảm, không bị chặn.    
D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = \frac{\pi }{6} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                  
B. \(x = \frac{\pi }{3} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \frac{\pi }{3} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                  
D. \(x = \frac{\pi }{6} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{u_5} = \frac{{23}}{9}\].                 
B. \[{u_5} = \frac{{73}}{{27}}\]. 
C. \[{u_5} = \frac{{53}}{{19}}\]. 
D. \[{u_5} = \frac{{25}}{{11}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({u_n} = \frac{{\left( {n - 1} \right)n}}{2}\).      
B. \({u_n} = 5 + \frac{{\left( {n - 1} \right)n}}{2}\).
C. \({u_n} = 5 + \frac{{\left( {n + 1} \right)n}}{2}\).                                                                 
D. \({u_n} = 5 + \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP