Câu hỏi:

05/11/2025 296 Lưu

Cho bất phương trình \({\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 + 2\sqrt 2 } \right)^{5 - 2x}}\).

a) Ta có \(3 + 2\sqrt 2 = {\left( {3 - 2\sqrt 2 } \right)^{ - 1}}\).

b) Bất phương trình đã cho tương đương với bất phương trình \({x^2} - 4x > 2x - 5\).

c) Số nghiệm nguyên của bất phương trình là 5.

d) Tổng các nghiệm nguyên của bất phương trình là 9.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \[\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right) = 1 \Rightarrow 3 + 2\sqrt 2 = \frac{1}{{3 - 2\sqrt 2 }} = {\left( {3 - 2\sqrt 2 } \right)^{ - 1}}\].

b) Sai. \({\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 + 2\sqrt 2 } \right)^{5 - 2x}} \Leftrightarrow {\left( {3 - 2\sqrt 2 } \right)^{{x^2} - 4x}} > {\left( {3 - 2\sqrt 2 } \right)^{2x - 5}} \Leftrightarrow {x^2} - 4x < 2x - 5\).

c) Sai. Ta có \({x^2} - 4x < 2x - 5 \Leftrightarrow {x^2} - 6x + 5 < 0 \Leftrightarrow 1 < x < 5\).

Vậy bất phương trình có 3 nghiệm nguyên là 2; 3; 4.

d) Đúng. Tổng các nghiệm nguyên là \(2 + 3 + 4 = 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({m_0}\) là khối lượng của \({}_6^{14}C\) trong cây tại thời điểm cây còn sống \(\left( {t = 0} \right)\).

Khi đó, khối lượng \(m\left( t \right)\) của \({}_6^{14}C\) trong cây sau khi chết \(t\) (năm) được tính bởi công thức:\(m\left( t \right) = {m_o}{\left( {\frac{1}{2}} \right)^{\frac{t}{{5730}}}}\).

Theo giả thiết, ta có: \(\frac{{m\left( t \right)}}{{{m_o}}} = {\left( {\frac{1}{2}} \right)^{\frac{t}{{5730}}}} = 0,75\).

Do đó \(\frac{t}{{5730}} = {\log _{0,5}}\left( {0,75} \right) \Leftrightarrow t \approx 2378\).

Vậy mẫu gỗ cổ đó đã chết cách đây bao nhiêu \[2378\] năm.

Đáp án: 2378.

Câu 2

A. \[\left( {1; + \infty } \right)\].       
B. \(\left( { - \infty ;1} \right)\).    
C. \(\left( { - 1; + \infty } \right)\).          
D. \(\left( { - \infty ; - 1} \right)\).

Lời giải

Ta có \({3^{3x + 1}} < \frac{1}{9} \Leftrightarrow {3^{3x + 1}} < {3^{ - 2}} \Leftrightarrow 3x + 1 < - 2 \Leftrightarrow x < - 1\).

Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 1} \right)\). Chọn D.

Câu 4

A. \(x > {\log _{0,5}}3\).                    
B. \(x < {\log _{0,5}}3\).     
C. \(x < {\log _3}0,5\).      
D. \(x > {\log _3}0,5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( { - \infty ;1} \right)\].       
B. \[\left( { - 1;1} \right)\].  
C. \[\left( {1; + \infty } \right)\].               
D. \[\left( {0;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {4; + \infty } \right)\).              
B. \(\left( {3; + \infty } \right)\).  
C. \(\left( {5; + \infty } \right)\).     
D. \(\left( {6; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP