Câu hỏi:

06/11/2025 16 Lưu

Cho hình lập phương\(ABCD.A'B'C'D'\) cạnh \(a\). Khẳng định nào sau đây là sai?

Media VietJack

A. \[\left| {\overrightarrow {BD} } \right| = a\sqrt 2 \].              

B. \[\left| {\overrightarrow {BD'} } \right| = a\sqrt 3 \].

C. \[\overrightarrow {AC} + \overrightarrow {A'C'} = \vec 0\].       

D. \[\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD'} \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[\left| {\overrightarrow {BD} } \right| = BD = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \] nên khẳng định ở phương án A đúng.

\[\left| {\overrightarrow {BD'} } \right| = BD' = \sqrt {{a^2} + {a^2} + {a^2}} = a\sqrt 3 \] nên khẳng định ở phương án B đúng.

Theo quy tắc hình hộp, ta có \[\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD'} \] nên khẳng định ở phương án D đúng.

Ta có \(\overrightarrow {AC} + \overrightarrow {A'C'} = \overrightarrow {AC} + \overrightarrow {AC} = 2\overrightarrow {AC} \ne \overrightarrow 0 \) nên khẳng định ở phương án C sai. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.

Gọi \(A,B,M\) lần lượt là vị trí của khinh khí cầu thứ nhất, khinh khí cầu thứ hai và người quan sát. Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).

Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\). Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).

Ta có \(MA + MB = MA + MB' \ge AB'\).

Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.

\(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} = \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\)\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).

Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).

Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc khinh khí cầu là:

\(OM = \frac{{100\sqrt 2 }}{3} \approx 47\) (m).

Đáp án: 47.

Lời giải

Chọn hệ trục tọa độ Oxyz với gốc O đặt tại điểm xuất phát của máy bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất sao cho trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét.

Khi đó tọa độ của máy bay là điểm \(A\left( { - 55; - 20;1,5} \right)\).

Khoảng cách của chiếc máy bay với vị trí tại điểm xuất phát bằng:

\(OA = \sqrt {{{\left( { - 55} \right)}^2} + {{\left( { - 20} \right)}^2} + 1,{5^2}} \approx 58,5\left( {{\rm{km}}} \right)\).

Đáp án: 58,5.

Câu 3

A. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\).           

B. \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {DA} \).

C. \(\overrightarrow {AB} + \overrightarrow {DC} - \overrightarrow {DB} = \overrightarrow {CA} \).  

D. \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - \frac{{{a^2}\sqrt 3 }}{2}\).            
B. \( - \frac{{{a^2}}}{2}\).       
C. \(\frac{{{a^2}}}{2}\).    
D. \(\frac{{{a^2}\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP