Câu hỏi:

06/11/2025 14 Lưu

Nhà bác An được mô tả như hình vẽ bên dưới, trong đó phần thân nhà là hình hộp chữ nhật \(ABCD.EFGH\). Ngôi nhà được lợp ngói hai mái là hai hình chữ nhật \(PEHQ\)\(PFGQ\), biết tam giác \(EFP\) là tam giác cân tại \(P\). Gọi \(T\) là trung điểm của cạnh \(DC\). Các kích thước của nhà lần lượt là \(AB = 6\,{\rm{m}}\), \(AE = 5\,{\rm{m}}\), \(AD = 8\,{\rm{m}}\), \(QT = 7\,{\rm{m}}\). Xét hệ trục tọa độ \(Oxyz\) sao cho gốc tọa độ là điểm \(O\) thuộc đoạn \(AD\) sao cho \(OA = 2\,{\rm{m}}\) và các trục tọa độ tương ứng là các trục \(Ox,Oy,Oz\).

Media VietJack

a) Toạ độ điểm \(A\)\(\left( {2;0;0} \right)\).

b) Vectơ \(\overrightarrow {AC} \) có toạ độ là \(\left( {6;6;0} \right)\).

c) Mái nhà bác An được lợp bằng ngói đất nung Đất Việt, giá tiền mỗi viên ngói là \(11000\) đồng và để lợp được \(1\) \({{\rm{m}}^{\rm{2}}}\) diện tích mái cần \(22\) viên ngói. Số tiền cần bỏ ra để mua ngói lợp mái nhà là \(13\,960\,000\) đồng (không kể hao phí do việc cắt và ghép các viên ngói, làm tròn kết quả đến hàng nghìn).

d) Bác An muốn lắp một chiếc đèn lồng tại vị trí trung điểm của \(FG\) và đầu nguồn điện đặt tại vị trí \(O\). Bác ấy thiết kế đường dây điện nối từ \(O\) đến \(K\) sau đó nối đến chiếc đèn lồng. Độ dài đoạn dây điện nối tối thiểu bằng \(5 + 2\sqrt {10} \,\,{\rm{(m)}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Theo bài ra, ta có tọa độ điểm \(A\)\(\left( {2;0;0} \right)\).

b) Sai. Ta có \[OD = AD - OA = 8 - 2 = 6\]m. Tọa độ điểm \[C\left( { - 6;\,6;0} \right)\].

Vì vậy \[\overrightarrow {AC} = \left( { - 8;6;0} \right)\].

c) Sai. Gọi \[M\] là trung điểm của \[HG\] nên \[QM = 7 - 5 = 2\]m, \[MG = \frac{{HG}}{2} = \frac{{AB}}{2} = 3\]m.

Ta có \[QG = \sqrt {Q{M^2} + M{G^2}} = \sqrt {{2^2} + {3^2}} = \sqrt {13} \]m.

Diện tích cần lợp là \[S = 2{S_{PQGF}} = 2 \cdot 8 \cdot \sqrt {13} = 16\sqrt {13} \] (m2).

Số tiền cần phải trả là \[S \cdot 22 \cdot 11\,000 \approx 13\,961\,000\] đồng.

d) Đúng. Gọi \[J\] là trung điểm của \[BC\] nên \[J\left( { - 2;6;0} \right)\].

Gọi \[I\] là trung điểm của \[FG\] nên \[I\left( { - 2;6;5} \right)\].

Ta có \[KI = \sqrt {{{\left( { - 2} \right)}^2} + {6^2} + {0^2}} = 2\sqrt {10} \]m.

Vì vậy \[{d_{\min }} = OK + KI = 5 + 2\sqrt {10} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục tọa độ Oxyz với gốc O đặt tại điểm xuất phát của máy bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất sao cho trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét.

Khi đó tọa độ của máy bay là điểm \(A\left( { - 55; - 20;1,5} \right)\).

Khoảng cách của chiếc máy bay với vị trí tại điểm xuất phát bằng:

\(OA = \sqrt {{{\left( { - 55} \right)}^2} + {{\left( { - 20} \right)}^2} + 1,{5^2}} \approx 58,5\left( {{\rm{km}}} \right)\).

Đáp án: 58,5.

Lời giải

Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.

Gọi \(A,B,M\) lần lượt là vị trí của khinh khí cầu thứ nhất, khinh khí cầu thứ hai và người quan sát. Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).

Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\). Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).

Ta có \(MA + MB = MA + MB' \ge AB'\).

Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.

\(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} = \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\)\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).

Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).

Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc khinh khí cầu là:

\(OM = \frac{{100\sqrt 2 }}{3} \approx 47\) (m).

Đáp án: 47.

Câu 3

A. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\).           

B. \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {DA} \).

C. \(\overrightarrow {AB} + \overrightarrow {DC} - \overrightarrow {DB} = \overrightarrow {CA} \).  

D. \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - \frac{{{a^2}\sqrt 3 }}{2}\).            
B. \( - \frac{{{a^2}}}{2}\).       
C. \(\frac{{{a^2}}}{2}\).    
D. \(\frac{{{a^2}\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left| {\overrightarrow {BD} } \right| = a\sqrt 2 \].              

B. \[\left| {\overrightarrow {BD'} } \right| = a\sqrt 3 \].

C. \[\overrightarrow {AC} + \overrightarrow {A'C'} = \vec 0\].       

D. \[\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD'} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP