Nhà bác An được mô tả như hình vẽ bên dưới, trong đó phần thân nhà là hình hộp chữ nhật \(ABCD.EFGH\). Ngôi nhà được lợp ngói hai mái là hai hình chữ nhật \(PEHQ\) và \(PFGQ\), biết tam giác \(EFP\) là tam giác cân tại \(P\). Gọi \(T\) là trung điểm của cạnh \(DC\). Các kích thước của nhà lần lượt là \(AB = 6\,{\rm{m}}\), \(AE = 5\,{\rm{m}}\), \(AD = 8\,{\rm{m}}\), \(QT = 7\,{\rm{m}}\). Xét hệ trục tọa độ \(Oxyz\) sao cho gốc tọa độ là điểm \(O\) thuộc đoạn \(AD\) sao cho \(OA = 2\,{\rm{m}}\) và các trục tọa độ tương ứng là các trục \(Ox,Oy,Oz\).

a) Toạ độ điểm \(A\) là \(\left( {2;0;0} \right)\).
b) Vectơ \(\overrightarrow {AC} \) có toạ độ là \(\left( {6;6;0} \right)\).
c) Mái nhà bác An được lợp bằng ngói đất nung Đất Việt, giá tiền mỗi viên ngói là \(11000\) đồng và để lợp được \(1\) \({{\rm{m}}^{\rm{2}}}\) diện tích mái cần \(22\) viên ngói. Số tiền cần bỏ ra để mua ngói lợp mái nhà là \(13\,960\,000\) đồng (không kể hao phí do việc cắt và ghép các viên ngói, làm tròn kết quả đến hàng nghìn).
d) Bác An muốn lắp một chiếc đèn lồng tại vị trí trung điểm của \(FG\) và đầu nguồn điện đặt tại vị trí \(O\). Bác ấy thiết kế đường dây điện nối từ \(O\) đến \(K\) sau đó nối đến chiếc đèn lồng. Độ dài đoạn dây điện nối tối thiểu bằng \(5 + 2\sqrt {10} \,\,{\rm{(m)}}\).
Quảng cáo
Trả lời:
a) Đúng. Theo bài ra, ta có tọa độ điểm \(A\) là \(\left( {2;0;0} \right)\).
b) Sai. Ta có \[OD = AD - OA = 8 - 2 = 6\]m. Tọa độ điểm \[C\left( { - 6;\,6;0} \right)\].
Vì vậy \[\overrightarrow {AC} = \left( { - 8;6;0} \right)\].
c) Sai. Gọi \[M\] là trung điểm của \[HG\] nên \[QM = 7 - 5 = 2\]m, \[MG = \frac{{HG}}{2} = \frac{{AB}}{2} = 3\]m.
Ta có \[QG = \sqrt {Q{M^2} + M{G^2}} = \sqrt {{2^2} + {3^2}} = \sqrt {13} \]m.
Diện tích cần lợp là \[S = 2{S_{PQGF}} = 2 \cdot 8 \cdot \sqrt {13} = 16\sqrt {13} \] (m2).
Số tiền cần phải trả là \[S \cdot 22 \cdot 11\,000 \approx 13\,961\,000\] đồng.
d) Đúng. Gọi \[J\] là trung điểm của \[BC\] nên \[J\left( { - 2;6;0} \right)\].
Gọi \[I\] là trung điểm của \[FG\] nên \[I\left( { - 2;6;5} \right)\].
Ta có \[KI = \sqrt {{{\left( { - 2} \right)}^2} + {6^2} + {0^2}} = 2\sqrt {10} \]m.
Vì vậy \[{d_{\min }} = OK + KI = 5 + 2\sqrt {10} \].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SAG} = 60^\circ \Rightarrow SG = SA \cdot \sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right){\rm{.}}\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right){\rm{.}}\)
Đáp án: 11,5.
Lời giải
Chọn hệ trục tọa độ Oxyz với gốc O đặt tại điểm xuất phát của máy bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất sao cho trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét.
Khi đó tọa độ của máy bay là điểm \(A\left( { - 55; - 20;1,5} \right)\).
Khoảng cách của chiếc máy bay với vị trí tại điểm xuất phát bằng:
\(OA = \sqrt {{{\left( { - 55} \right)}^2} + {{\left( { - 20} \right)}^2} + 1,{5^2}} \approx 58,5\left( {{\rm{km}}} \right)\).
Đáp án: 58,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

