Câu hỏi:

06/11/2025 1,220 Lưu

Trong không gian tọa độ Oxyz, cho điểm \(M\left( {1; - \sqrt 2 ;\sqrt 3 } \right)\). Tìm điểm \(M' \in Ox\) sao cho độ dài đoạn thẳng \(MM'\) ngắn nhất.

A. \(M'\left( { - 1;0;0} \right)\).                   
B. \(M'\left( {1;0;0} \right)\).    
C. \(M'\left( {1;0;\sqrt 3 } \right)\).                        
D. \(M'\left( {1; - \sqrt 2 ;0} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
\(MM'\) ngắn nhất khi điểm \(M'\) là hình chiếu điểm \(M\) trên trục Ox \( \Rightarrow M'\left( {1;0;0} \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Radar đặt trên đỉnh tháp, trục \(Oz\) hướng thẳng đứng lên phía trên, suy ra tọa độ của đỉnh tháp \(E\left( {0\,;0\,;\,0,1} \right)\).

b) Đúng. Tọa độ điểm \(F\left( {400; - 300;12} \right)\).

\[\overrightarrow {EF} = \left( {400; - 300;11,9} \right) \Rightarrow EF \approx 500,14 < 600\,\,\left( {{\rm{km}}} \right)\].

Vậy \(F\) nằm trong phạm vi điều khiển của radar.

c) Sai. Từ \(F\), máy bay bay 1 giờ đến \(A\) với vận tốc \(900\,{\rm{km/h}}\) theo phương \(\overrightarrow a = \left( {3;4;0} \right)\).

Suy ra \[\left\{ \begin{array}{l}\overrightarrow {FA} = k\overrightarrow a \\\left| {\overrightarrow {FA} } \right| = 900\end{array} \right. \Rightarrow k\left| {\overrightarrow a } \right| = 900 \Rightarrow k = \frac{{900}}{{\sqrt {{3^2} + {4^2}} }} = 180.\]

Suy ra \(\overrightarrow {FA} = \left( {540;720;0} \right) \Rightarrow A\left( {940;420;12} \right).\)

d) Sai. Gọi \(K\left( {x;y;z} \right)\) là điểm máy bay đạt đến phạm vi quan sát của radar, suy ra \(EK = 600\).

Khi đó \(\overrightarrow {FK} = k\overrightarrow a \left( {k > 0} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 400 = 3k\\y + 300 = 4k\\z - 12 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400 + 3k\\y = - 300 + 4k\\z = 12\end{array} \right. \Rightarrow K\left( {400 + 3k; - 300 + 4k;12} \right)\).

Suy ra \(\overrightarrow {EK} = \left( {400 + 3k; - 300 + 4k;11,9} \right)\), mà \(EK = 600.\)

Nên \({\left( {400 + 3k} \right)^2} + {\left( { - 300 + 4k} \right)^2} + 11,{9^2} = {600^2} \Leftrightarrow 25{k^2} = 109858,39 \Leftrightarrow k \approx 66.\)

Khi đó \(K\left( {598; - 36;12} \right) \Rightarrow \overrightarrow {FK} = \left( {198;264;0} \right) \Rightarrow FK = 330\).

Thời gian máy bay trong phạm vi theo dõi của radar là \(t = \frac{{330 \cdot 60}}{{900}} = 22\) phút.

Lời giải

Media VietJack

a) Sai. Ba vectơ \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} \) không đồng phẳng.

b) Đúng. Ta có \(\overrightarrow {{F_1}} \cdot \overrightarrow {{F_2}} = \left| {\overrightarrow {{F_1}} } \right| \cdot \left| {{{\vec F}_2}} \right| \cdot {\rm{cos}}\left( {{{\vec F}_1},\overrightarrow {{F_2}} } \right)\).

c) Sai. Trọng lực \(P = 4,6 \cdot 9,8 = 45,08\,\left( {\rm{N}} \right)\).

d) Sai. Gọi \(O\) là tâm của đáy. Khi đó \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \vec 0\).

Ta có \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OC} = 3\overrightarrow {SO} \).

\( \Rightarrow \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} \left| = \right|3\overrightarrow {SO} } \right| = 3SO\).

Mặt khác \(3SO = \left| {\vec P} \right| = 45,08 \Rightarrow SO = \frac{{1127}}{{75}}\).

Gọi \(H\) là trung điểm của AB. Đặt \(AB = x\,\,\left( {x > 0} \right)\).

Khi đó \(SH = \frac{{AB\sqrt 3 }}{2} = \frac{{x\sqrt 3 }}{2}\).

Ta có \(CH = \frac{{AB\sqrt 3 }}{2} = \frac{{x\sqrt 3 }}{2} \Rightarrow OH = \frac{{x\sqrt 3 }}{6}\).

Tam giác SOH vuông tại \(O\) nên \(S{H^2} = S{O^2} + O{H^2} \Rightarrow \frac{{3{x^2}}}{4} = {\left( {\frac{{1127}}{{75}}} \right)^2} + \frac{{{x^2}}}{{12}} \Rightarrow x = \frac{{1127\sqrt 6 }}{{150}}\).

Do đó \(SA = \frac{{1127\sqrt 6 }}{{150}} \approx 18,4\). Suy ra \(\left| {\overrightarrow {{F_1}} } \right| \approx 18,4\,{\rm{(N)}}\).

Vậy độ lớn của các lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \) bằng \(18,4\,{\rm{N}}\).