Câu hỏi:

10/11/2025 23 Lưu

(a) Biểu diễn các số hữu tỉ \(\frac{1}{2};\,\,\frac{{ - 2}}{3};\,\,\frac{{ - 7}}{5};\,\,\frac{{63}}{4};\,\,\frac{{32}}{6}\) dưới dạng số thập phân.

(b) Tìm căn bậc hai số học của các số sau: \(0,25;\,\,0;\,\,1;\,\, - 4;\,\,36\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có: \(\frac{1}{2} = 0,5\); \(\frac{{ - 2}}{3} = - 0,666... = - 0,(6)\);

\(\frac{{ - 7}}{5} = - 1,4\); \(\frac{{63}}{4} = 15,75\); \(\frac{{11}}{7} = 5,3333... = 5,(3)\).

Vậy các số hữu tỉ \(\frac{1}{2};\,\,\frac{{ - 2}}{3};\,\,\frac{{ - 7}}{5};\,\,\frac{{63}}{4};\,\,\frac{{32}}{6}\) được biểu diễn dưới dạng số thập phân lần lượt là:

\(0,5;\,\, - 0,(6);\,\, - 1,4;\,\,15,75;\,\,5,(3)\).

b) Căn bậc hai số học của \(0,25\) là \(\sqrt {0,25} = 0,5\);

Căn bậc hai số học của \(0\) là \(\sqrt 0 = 0\);

Căn bậc hai số học của \(1\)là \(\sqrt 1 = 1\);

Căn bậc hai số học của \(36\) là \(\sqrt {36} = 6\);

Vì \( - 4 < 0\) nên \( - 4\) không có căn bậc hai số học.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho  ˆ x O y = 80 ∘  và tia  O z  nằm giữa hai tia  O x ; O y  sao cho  ˆ x O z = 40 ∘ .  (a) Chứng minh tia  O z là tia phân giác của góc  ˆ x O y .  (b) Vẽ tia  O m  là tia đối của tia  O x . Tính số đo  ˆ m O z . (ảnh 1)

a) Vì \(Oz\) nằm giữa hai tia \(Ox,\,\,Oy\) nên \(\widehat {xOz} + \widehat {zOy} = \widehat {xOy}\)

Hay \(40^\circ + \widehat {zOy} = 80^\circ \).

Suy ra \(\widehat {zOy} = 80^\circ - 40^\circ = 40^\circ \).

Vậy \(\widehat {zOy} = 40^\circ \).

Ta có \(Oz\) nằm giữa hai tia \(Ox,\,\,Oy\) và \(\widehat {xOz} = \widehat {zOy} = \frac{{\widehat {xOy}}}{2}\).

Do đó tia \(Oz\) là tia phân giác của \(\widehat {xOy}\).

b) Vì \(Om\)là tia đối của tia \(Ox\) nên \(\widehat {mOz}\) và \(\widehat {zOx}\) là hai góc kề bù.

Khi đó, ta có \(\widehat {mOz} + \widehat {zOx} = 180^\circ \)

Suy ra \[\widehat {mOz} = 180^\circ - \widehat {zOx} = 180^\circ - 40^\circ = 140^\circ \].

Lời giải

Ta có \[A = \frac{{5n - 3}}{{n - 2}} = \frac{{5n - 10 + 10 - 3}}{{n - 2}} = \frac{{5\left( {n - 2} \right) + 7}}{{n - 2}} = 5 + \frac{7}{{n - 2}}\].

Để biểu thức\(A\) là số nguyên thì \(\frac{7}{{n - 2}}\) nguyên hay \(7\,\, \vdots \,\,\left( {n - 2} \right)\).

Do đó \(\left( {n - 2} \right) \in \) Ư(7) \( = \left\{ { \pm 1;\,\, \pm 7} \right\}\).

Cho biểu thức  A = 5 n − 3 / n − 2 . Tìm giá trị  n  nguyên để biểu thức  A  đạt giá trị nguyên. (ảnh 1)

Vậy để biểu thức\(A\) đạt giá trị nguyên thì \(n \in \left\{ { - 5;\,\, - 1;\,\,3;\,\,9} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP