Câu hỏi:

10/11/2025 47 Lưu

Cho \(\widehat {xOy} = 80^\circ \) và tia \(Oz\) nằm giữa hai tia \(Ox;Oy\) sao cho \(\widehat {xOz} = 40^\circ \).

(a) Chứng minh tia \(Oz\)là tia phân giác của góc \(\widehat {xOy}\).

(b) Vẽ tia \(Om\) là tia đối của tia \(Ox\). Tính số đo \(\widehat {mOz}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho  ˆ x O y = 80 ∘  và tia  O z  nằm giữa hai tia  O x ; O y  sao cho  ˆ x O z = 40 ∘ .  (a) Chứng minh tia  O z là tia phân giác của góc  ˆ x O y .  (b) Vẽ tia  O m  là tia đối của tia  O x . Tính số đo  ˆ m O z . (ảnh 1)

a) Vì \(Oz\) nằm giữa hai tia \(Ox,\,\,Oy\) nên \(\widehat {xOz} + \widehat {zOy} = \widehat {xOy}\)

Hay \(40^\circ + \widehat {zOy} = 80^\circ \).

Suy ra \(\widehat {zOy} = 80^\circ - 40^\circ = 40^\circ \).

Vậy \(\widehat {zOy} = 40^\circ \).

Ta có \(Oz\) nằm giữa hai tia \(Ox,\,\,Oy\) và \(\widehat {xOz} = \widehat {zOy} = \frac{{\widehat {xOy}}}{2}\).

Do đó tia \(Oz\) là tia phân giác của \(\widehat {xOy}\).

b) Vì \(Om\)là tia đối của tia \(Ox\) nên \(\widehat {mOz}\) và \(\widehat {zOx}\) là hai góc kề bù.

Khi đó, ta có \(\widehat {mOz} + \widehat {zOx} = 180^\circ \)

Suy ra \[\widehat {mOz} = 180^\circ - \widehat {zOx} = 180^\circ - 40^\circ = 140^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1.

a) \(A = 3:{\left( {\frac{{ - 3}}{2}} \right)^2} + \frac{1}{9}\,\,.\,\sqrt {36} + 0,75\)\( = 3:\frac{9}{4} + \frac{1}{9}.6 + 0,75\)

\( = 3\,\,.\,\,\frac{4}{9} + \frac{2}{3} + 0,75\)\(A = \frac{4}{3} + \frac{2}{3} + 0,75\)\( = 2 + 0,75\)\( = 2,75\).

b) \(B = \left( {8 - \frac{2}{3} + \frac{1}{2}} \right) - \left( {5 - \frac{7}{3} - \frac{3}{2}} \right) - \left( {\frac{5}{3} + \frac{5}{2} + 4} \right)\).

\[ = 8 - \frac{2}{3} + \frac{1}{2} - 5 + \frac{7}{3} + \frac{3}{2} - \frac{5}{3} - \frac{5}{2} - 4\]

\[ = \left( {8 - 5 - 4} \right) + \left( { - \frac{2}{3} + \frac{7}{3} - \frac{5}{3}} \right) + \left( {\frac{1}{2} + \frac{3}{2} - \frac{5}{2}} \right)\]

\[ = - 1 + 0 + \frac{{ - 1}}{2}\]\[ = \frac{{ - 3}}{2}\].

2.

a) \(\frac{3}{4} - \left( {x + \frac{1}{2}} \right) = \frac{1}{4}\)

\(x + \frac{1}{2} = \frac{3}{4} - \frac{1}{4}\)

\(x + \frac{1}{2} = \frac{1}{2}\)

\(x = \frac{1}{2} - \frac{1}{2}\)

\(x = 0\)

Vậy \(x = 0\).

b) \({\left( {x - \frac{2}{3}} \right)^2} + \frac{{16}}{{25}} = 1\)

\[{\left( {x - \frac{2}{3}} \right)^2} = 1 - \frac{{16}}{{25}}\]

\[{\left( {x - \frac{2}{3}} \right)^2} = \frac{9}{{25}}\]

\[{\left( {x - \frac{2}{3}} \right)^2} = {\left( {\frac{3}{5}} \right)^2} = {\left( {\frac{{ - 3}}{5}} \right)^2}\]

TH1: \(x - \frac{2}{3} = \frac{3}{5}\)

\(x = \frac{3}{5} + \frac{2}{3}\)

\(x = \frac{{19}}{{15}}\)

TH2: \(x - \frac{2}{3} = \frac{{ - 3}}{5}\)

\(x = \frac{{ - 3}}{5} + \frac{2}{3}\)

\(x = \frac{1}{{15}}\)

Vậy \[x \in \left\{ {\frac{{19}}{{15}};\,\,\frac{1}{{15}}} \right\}\].

Lời giải

Mỗi chiếc ti vi lãi số tiền là:

\(6{\rm{ }}400{\rm{ }}000\,\,.\,\,20\% = 1{\rm{ }}280{\rm{ }}000\) (đồng)

Nếu bán hết 20 chiếc ti vi thì số tiền lãi là:

\(20\,\,.\,\,1{\rm{ 280 000 = 25 600 000}}\) (đồng).

Vậy nếu bán hết 20 chiếc ti vi thì số tiền lãi là 25 600 000 đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\frac{{ - 3}}{{ - 4}}\)

\(\frac{4}{3}\)

\(\frac{{ - 4}}{3}\)

\(\frac{{ - 3}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP