Câu hỏi:

10/11/2025 40 Lưu

Một bể bơi có dạng hình hộp chữ nhật với chiều dài là \(12\,\,{\rm{m}}\), chiều rộng là \(5\,\,{\rm{m}}\), chiều sâu là \(1,75\,\,{\rm{m}}\). Người thợ phải dùng bao nhiêu viên gạch men để lát đáy và xung quanh bể đó? Biết rằng mỗi viên gạch có dạng hình chữ nhật với chiều dài là \(25\,\,{\rm{cm}}\), chiều rộng là \(20\,\,{\rm{cm}}\) và diện tích mạch vữa không đáng kể.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chu vi đáy của bể bơi dạng hình hộp chữ nhật là: .

Diện tích xung quanh của bể bơi dạng hình hộp chữ nhật là:

Diện tích đáy của bể bơi dạng hình hộp chữ nhật là:

Diện tích cần lát gạch men là: \(59,5 + 60 = 119,5\,\,\left( {{{\rm{m}}^2}} \right)\)

Diện tích viên gạch dạng hình chữ nhật là: \[{S_{gach}} = 25.20 = 500\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right) = 0,05\,\,\left( {{{\rm{m}}^2}} \right)\]

Số viên gạch men dùng để lát đáy và xung quanh bể là: \(119,5:0,05 = 2\,\,390\) (viên).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\frac{4}{3} - \frac{1}{3}.\frac{2}{5} = \frac{4}{3} - \frac{2}{{15}} = \frac{{20}}{{15}} - \frac{2}{{15}} = \frac{{18}}{{15}} = \frac{6}{5}\);

b) \[\frac{{11}}{{24}} - \frac{5}{{41}} + \frac{{13}}{{24}} - \frac{{36}}{{41}} = \left( {\frac{{11}}{{24}} + \frac{{13}}{{24}}} \right) + \left( { - \frac{5}{{41}} - \frac{{36}}{{41}}} \right) = 1 + \left( { - 1} \right) = 0\];

c) \(\left( {\frac{{ - 7}}{4} + \frac{7}{{13}}} \right):\frac{4}{5} + \left( {\frac{6}{{13}} - \frac{1}{4}} \right):\frac{4}{5} = \left( {\frac{{ - 7}}{4} + \frac{7}{{13}}} \right).\frac{5}{4} + \left( {\frac{6}{{13}} - \frac{1}{4}} \right).\frac{5}{4}\)

\( = \frac{5}{4}.\left( {\frac{{ - 7}}{4} - \frac{1}{4} + \frac{7}{{13}} + \frac{6}{{13}}} \right) = \frac{5}{4}.\left( { - 2 + 1} \right) = \frac{5}{4}.\left( { - 1} \right) = - \frac{5}{4}\).

Lời giải

Cho hình vẽ bên.Biết  ˆ A O B = 50 ∘ , tia  O C  là tia phân giác của góc  A O B .  (a) Vẽ lại hình và kể tên góc kề bù với góc  A O C .  (b) Tính số đo của mỗi góc  B O E , A O D . (ảnh 2)

a) Học sinh vẽ hình đúng số đo góc.

Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).

b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BOE} = 180^\circ - \widehat {AOB} = 180^\circ - 50^\circ = 130^\circ \).

Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).

Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {AOD} = 180^\circ - \widehat {AOC} = 180^\circ - 25^\circ = 155^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP