Một bể bơi có dạng hình hộp chữ nhật với chiều dài là \(12\,\,{\rm{m}}\), chiều rộng là \(5\,\,{\rm{m}}\), chiều sâu là \(1,75\,\,{\rm{m}}\). Người thợ phải dùng bao nhiêu viên gạch men để lát đáy và xung quanh bể đó? Biết rằng mỗi viên gạch có dạng hình chữ nhật với chiều dài là \(25\,\,{\rm{cm}}\), chiều rộng là \(20\,\,{\rm{cm}}\) và diện tích mạch vữa không đáng kể.
Quảng cáo
Trả lời:
Chu vi đáy của bể bơi dạng hình hộp chữ nhật là: .
Diện tích xung quanh của bể bơi dạng hình hộp chữ nhật là:
Diện tích đáy của bể bơi dạng hình hộp chữ nhật là:
Diện tích cần lát gạch men là: \(59,5 + 60 = 119,5\,\,\left( {{{\rm{m}}^2}} \right)\)
Diện tích viên gạch dạng hình chữ nhật là: \[{S_{gach}} = 25.20 = 500\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right) = 0,05\,\,\left( {{{\rm{m}}^2}} \right)\]
Số viên gạch men dùng để lát đáy và xung quanh bể là: \(119,5:0,05 = 2\,\,390\) (viên).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\frac{4}{3} - \frac{1}{3}.\frac{2}{5} = \frac{4}{3} - \frac{2}{{15}} = \frac{{20}}{{15}} - \frac{2}{{15}} = \frac{{18}}{{15}} = \frac{6}{5}\);
b) \[\frac{{11}}{{24}} - \frac{5}{{41}} + \frac{{13}}{{24}} - \frac{{36}}{{41}} = \left( {\frac{{11}}{{24}} + \frac{{13}}{{24}}} \right) + \left( { - \frac{5}{{41}} - \frac{{36}}{{41}}} \right) = 1 + \left( { - 1} \right) = 0\];
c) \(\left( {\frac{{ - 7}}{4} + \frac{7}{{13}}} \right):\frac{4}{5} + \left( {\frac{6}{{13}} - \frac{1}{4}} \right):\frac{4}{5} = \left( {\frac{{ - 7}}{4} + \frac{7}{{13}}} \right).\frac{5}{4} + \left( {\frac{6}{{13}} - \frac{1}{4}} \right).\frac{5}{4}\)
\( = \frac{5}{4}.\left( {\frac{{ - 7}}{4} - \frac{1}{4} + \frac{7}{{13}} + \frac{6}{{13}}} \right) = \frac{5}{4}.\left( { - 2 + 1} \right) = \frac{5}{4}.\left( { - 1} \right) = - \frac{5}{4}\).
Lời giải

a) Học sinh vẽ hình đúng số đo góc.
Các góc kề bù với góc \(AOC\) là \(\widehat {AOD},\widehat {COE}\).
b) Ta có: \(\widehat {AOB} + \widehat {BOE} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {BOE} = 180^\circ - \widehat {AOB} = 180^\circ - 50^\circ = 130^\circ \).
Vì tia \(OC\) là tia phân giác của góc \(AOB\) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = 25^\circ \).
Ta có \(\widehat {AOC} + \widehat {AOD} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {AOD} = 180^\circ - \widehat {AOC} = 180^\circ - 25^\circ = 155^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\frac{1}{{27}}\)
\(27\)
\(\frac{1}{9}\)
\(9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.