Câu hỏi:

11/11/2025 52 Lưu

Cho hình thang \(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\). Một đường thẳng song song với hai đáy, cắt các cạnh bên \(AD\)\(BC\) theo thứ tự \(M\)\(N.\) Gọi \(I\) là giao điểm của đường chéo \(AC\) với \(MN\). Khi đó:

a) \(\frac{{AM}}{{MD}} = \frac{{AI}}{{IC}}.\)
Đúng
Sai
b) \(\frac{{AM}}{{MD}} = \frac{{BN}}{{BC}}.\)
Đúng
Sai
c) \(\frac{{CN}}{{CB}} = \frac{{CI}}{{CA}}.\)
Đúng
Sai
d) \(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = 1\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

Áp dụng định lí Thalès vào tam giác \(ACD\)\(IM\parallel CD\) ta được: \(\frac{{AM}}{{MD}} = \frac{{AI}}{{IC}}.\)   (1)

b) Sai.

Áp dụng định lí Thalès vào tam giác \(ACB\)\(IN\parallel AB\) ta được: \(\frac{{BN}}{{NC}} = \frac{{AI}}{{IC}}.\) (2)

Từ (1) và (2) suy ra \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}.\)

c) Đúng.

Áp dụng định lí Thalès vào tam giác \(ACB\)\(IN\parallel AB\) ta được: \(\frac{{CN}}{{CB}} = \frac{{IC}}{{AC}}.\) (3)

d) Đúng.

Áp dụng định lí Thalès vào tam giác \(ACD\)\(IM\parallel CD\) ta được: \(\frac{{AM}}{{AD}} = \frac{{AI}}{{AC}}.\) (4)

Cộng theo vế các đẳng thức (3) và (4) thu được:

\(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = \frac{{AI}}{{AC}} + \frac{{IC}}{{AC}} = \frac{{AI + IC}}{{AC}} = \frac{{AC}}{{AC}} = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 200

Xét \(\Delta OAB\)\(AB\parallel A'B'\) (gt) nên: \(\frac{{OB'}}{{OB}} = \frac{{A'B'}}{{AB}}\) (hệ quả định lí Thalès).

Suy ra \(\frac{5}{{OB}} = \frac{3}{{120}}\) nên \(OB = \frac{{120 \cdot 5}}{3} = 200{\rm{ }}\left( {\rm{m}} \right)\).

Vậy vật \(AB\) được đặt cách vật kính máy ảnh là 200 m.

Lời giải

Đáp án: 37,3

Xét \(\Delta ABC\)\(FE\parallel BA\) (gt) nên \(\frac{{CF}}{{CA}} = \frac{{EF}}{{AB}}\) (hệ quả định lí Thalès).

Suy ra \(\frac{{44,2}}{{44,5 + 44,2}} = \frac{{18,6}}{{AB}}\) suy ra \(AB = \frac{{18,6 \cdot 88,7}}{{44,2}} = 37,3{\rm{ }}\left( {\rm{m}} \right)\).

Vậy chiều rộng của khúc sông \(AB\)\(37,3{\rm{ m}}{\rm{.}}\)

Câu 3

a) \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).
Đúng
Sai
b) \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}}.\)
Đúng
Sai
c) \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).
Đúng
Sai
d) \(\frac{{BD}}{{DC}} \cdot \frac{{EC}}{{EA}} \cdot \frac{{FA}}{{FB}} = 3.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(\frac{{MB}}{{MA}} = \frac{{BD}}{{DA}}.\)
Đúng
Sai
b) \(\frac{{NC}}{{NA}} = \frac{{DC}}{{DA}}.\)
Đúng
Sai
c) \(\frac{{MB}}{{MA}} = \frac{{NA}}{{NC}}.\)
Đúng
Sai
d) \(MN\parallel BC.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{3}{4}.\)      
B. \(\frac{2}{3}.\)    
C. \(\frac{4}{3}.\)       
D. \(\frac{3}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP