Câu hỏi:

11/11/2025 13 Lưu

Giữa hai điểm \(B\)\(C\) có một cái ao. Để đo khoảng cách \(BC\) người ta đo được các đoạn thẳng \(AD = {\rm{2 m, }}BD = 10{\rm{ m}}\)\(DE = 5{\rm{ m}}{\rm{.}}\)

Media VietJack

Biết \(DE\parallel BC\), tính khoảng cách giữa hai điểm \(B\)\(C.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 30

Xét tam giác \(ABC\)\(DE\parallel BC\) do đó \(\frac{{AD}}{{AB}} = \frac{{DE}}{{BC}}\) (hệ quả của định lí Thalès)

Suy ra \(\frac{2}{{12}} = \frac{5}{{BC}}\) suy ra \(BC = 30{\rm{ m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Đúng.

Áp dụng định lí Thalès vào tam giác \(ACD\)\(IM\parallel CD\) ta được: \(\frac{{AM}}{{MD}} = \frac{{AI}}{{IC}}.\)   (1)

b) Sai.

Áp dụng định lí Thalès vào tam giác \(ACB\)\(IN\parallel AB\) ta được: \(\frac{{BN}}{{NC}} = \frac{{AI}}{{IC}}.\) (2)

Từ (1) và (2) suy ra \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}.\)

c) Đúng.

Áp dụng định lí Thalès vào tam giác \(ACB\)\(IN\parallel AB\) ta được: \(\frac{{CN}}{{CB}} = \frac{{IC}}{{AC}}.\) (3)

d) Đúng.

Áp dụng định lí Thalès vào tam giác \(ACD\)\(IM\parallel CD\) ta được: \(\frac{{AM}}{{AD}} = \frac{{AI}}{{AC}}.\) (4)

Cộng theo vế các đẳng thức (3) và (4) thu được:

\(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = \frac{{AI}}{{AC}} + \frac{{IC}}{{AC}} = \frac{{AI + IC}}{{AC}} = \frac{{AC}}{{AC}} = 1.\)

Lời giải

a) Đúng.

\(AK\parallel BD\) nên áp dụng định lí Thalès, ta có: \(\frac{{AI}}{{ID}} = \frac{{AK}}{{BD}}.\) (1)

\(AH\parallel DC\) nên suy ra \(\frac{{AI}}{{ID}} = \frac{{AH}}{{DC}}\) (2)

Từ (1) và (2) suy ra \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).

b) Đúng.

Ta có \(\frac{{AF}}{{BF}} = \frac{{AH}}{{BC}}{\rm{ }}\left( {AH\parallel BC} \right)\)\(\frac{{AE}}{{CE}} = \frac{{AK}}{{BC}}{\rm{ }}\left( {AK\parallel BC} \right)\).

Do đó, \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{AH}}{{BC}} + \frac{{AK}}{{BC}} = \frac{{HK}}{{BC}}.\)

c) Đúng.

Lại có \(\frac{{HK}}{{BC}} = \frac{{HI}}{{IC}}{\rm{ }}\left( {HK\parallel BC} \right)\)\(\frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}{\rm{ }}\left( {AH\parallel BC} \right)\).

Từ đây suy ra \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}} = \frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}\).

Suy ra \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).

d) Sai.

Từ phần a), ta có: \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\) suy ra \(\frac{{BD}}{{DC}} = \frac{{AK}}{{AH}}\).

Lại có \(AK\parallel BC\) suy ra \(\frac{{EC}}{{EA}} = \frac{{BC}}{{AK}}\).

Mặt khác \(AH\parallel BC\) nên \(\frac{{FA}}{{FB}} = \frac{{HA}}{{BC}}\).

Từ đây suy ra BDDC . ECEA . FAFB = AKAH  . BCAK . HABC  = 1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Đường trung bình của tam giác là đoạn thẳng nối chân đường cao của tam giác.

B. Đường trung bình của tam giác là đoạn nối trung điểm hai cạnh của tam giác.

C. Trong một tam giác chỉ có một đường trung bình.

D. Đường trung bình của tam giác là đường nối từ một đỉnh đến trung điểm cạnh đối diện.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP