Câu hỏi:

11/11/2025 50 Lưu

Cho \(\Delta ABC\)\(AB = 2{\rm{ cm,}}\) \(AC = 4{\rm{ cm}}\). Qua \(B\) dựng đường thẳng cắt \(AC\) tại \(D\) sao cho \(\widehat {ABD} = \widehat {ACB}\). Gọi \(AH\) là đường cao \(\Delta ABC\), \(AE\) là đường cao của \(\Delta ABD\).

a) \(\Delta ABD \sim \Delta ACB\)
Đúng
Sai
b) \(\widehat {ADB} = \widehat {ABC}\).
Đúng
Sai
c) \(AD = 1{\rm{ cm,}}\) \(DC = 2{\rm{ cm}}\).
Đúng
Sai
d) \({S_{ABH}} = 4{S_{ADE}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

Xét \(\Delta ABD\)\(\Delta ACB\) có: \(\widehat {ABD} = \widehat {ACB}\) (gt) và \(\widehat {BAD} = \widehat {CAB}\) (góc chung)

Suy ra \(\Delta ABD \sim \Delta ACB\) (g.g)

b) Đúng.

Do \(\Delta ABD \sim \Delta ACB\) (g.g) nên \(\widehat {ADB} = \widehat {ABC}\) (hai góc tương ứng)

c) Sai.

Do \(\Delta ABD \sim \Delta ACB\) nên \(\frac{{AB}}{{AC}} = \frac{{AD}}{{AB}}\) hay \(AD = \frac{{A{B^2}}}{{AC}} = \frac{{{2^2}}}{4} = 1{\rm{ cm}}\).

Lại có: \(DC + AD = AC\) nên \(DC = AC - AD = 4 - 1 = 3{\rm{ cm}}\).

d) Đúng.

Ta có: \(\widehat {ADB} = \widehat {DBC} + \widehat {DCB}\) (tính chất góc ngoài tam giác)

\(\widehat {ABH} = \widehat {ABD} + \widehat {DBC}\).

Mà từ giả thiết có \(\widehat {ABD} = \widehat {ACB}\) nên \(\widehat {ADB} = \widehat {ABH}\).

Xét \(\Delta EDA\)\(\Delta HBA\), có: \(\widehat {AED} = \widehat {AHB} = 90^\circ \) (gt) và \(\widehat {ADE} = \widehat {ABH}\) (cmt)

Suy ra \(\Delta HBA \sim \Delta EDA\) (g.g)

Suy ra \(\frac{{AB}}{{AD}} = \frac{{AH}}{{EA}} = \frac{{BH}}{{AC}} = \frac{2}{1} = 2\).

Do đó, \(\frac{{{S_{ABH}}}}{{{S_{ADE}}}} = \frac{{AH}}{{EA}}.\frac{{BH}}{{AC}} = 2.2 = 4\) hay \({S_{ABH}} = 4{S_{ADE}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(M\) là trung điểm của \(BC.\)
Đúng
Sai
b) \(ME\parallel AB.\)
Đúng
Sai
c) \(AE = MC.\)
Đúng
Sai
d) \(\Delta AEN \sim \Delta CNM\).
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Theo đề, tam giác \(ABC\) cân tại \(A\) có đường cao \(AM\) nên \(AM\) cũng là đường trung tuyến của \(\Delta ABC\).

Suy ra \(M\) là trung điểm của \(BC.\)

b) Đúng.

Ta có \(M\) là trung điểm của \(BC\), \(N\) là trung điểm của \(AB\).

Do đó, \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN\parallel AB\) hay \(ME\parallel AB\).

c) Đúng.

Ta có \(AE\parallel BC\)\(ME\parallel AB\) nên \(AEMB\) là hình bình hành.

Suy ra \(AE = MB\)\(MB = MC\) nên \(AE = MC.\)

d) Sai.

Ta có \(AE\parallel BC\) nên \(AE\parallel MC\).

Do đó, \(\Delta AEN \sim \Delta CMN\).

Câu 2

A. \(k.\)                   
B. \(\frac{1}{k}.\)    
C. \({k^2}.\)                
D. \(\frac{1}{{{k^2}}}.\)

Lời giải

Đáp án đúng là: B

Nếu \(\Delta ABC \sim \Delta DEF\) theo tỉ số \(k\) thì \(\Delta DEF \sim \Delta ABC\) theo tỉ số bằng \(\frac{1}{k}.\)

Câu 3

A. \[EF = 6\,\,{\rm{cm}}{\rm{.}}\]              
B. \[\widehat {E\,} = 80^\circ .\]        
C. \[\widehat {D\,} = 70^\circ .\]           
D. \[\widehat {C\,} = 30^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).
Đúng
Sai
b) \(\Delta ABC \sim \Delta ANM\)
Đúng
Sai
c) \(AN = 2,4{\rm{ cm}}\), \(MN = 3,2{\rm{ cm}}\).
Đúng
Sai
d) \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{4}{{25}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai tam giác đồng dạng thì bằng nhau.                                    

B. Hai tam giác bằng nhau thì không đồng dạng.

C. Hai tam giác bằng nhau thì đồng dạng.                                    

D. Hai tam giác vuông luôn đồng dạng với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\Delta ABC \sim \Delta DEF.\]            

B. \[\Delta ABC \sim \Delta DFE.\]

C. \[\Delta ABC \sim \Delta EDF.\]    

D. \[\Delta ABC \sim \Delta EFD.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP