Câu hỏi:

12/11/2025 11 Lưu

Cho hàm số bậc nhất \(y = ax + b.\) Biết rằng đồ thị hàm số đó đi qua 2 điểm \(A\left( {0;\;\,1} \right)\)\(B\left( {2;\;\,5} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.

Hàm số đã cho là hàm số bậc nhất khi \(a \ne 0.\)

b) Đúng.

Vì đồ thị hàm số đã cho đi qua điểm \(A\left( {0;\;\,1} \right)\) nên \(1 = 0 \cdot a + b,\) suy ra \(b = 1.\)

c) Sai.

Với \(b = 1\) ta có \(y = ax + 1.\)

Vì đồ thị hàm số \(y = ax + 1\) đi qua điểm \(B\left( {2;\;\,5} \right)\) nên \(5 = 2a + 1,\) suy ra \(a = 2\) (thỏa mãn).

Vậy đồ thị hàm số đã cho là \(y = 2x + 1.\)

d) Sai.

Với \(x = - 1\) thay vào \(y = 2x + 1\) ta có: \(y = 2 \cdot \left( { - 1} \right) + 1 = - 1 \ne 3.\)

Vậy đồ thị hàm số đã cho không đi qua điểm \(C\left( { - 1;\;\,3} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \( - 4\)

Để \(\left( d \right):\;\,y = ax\) là đồ thị hàm số bậc nhất thì \(a \ne 0.\)

Vì đồ thị hàm số \(\left( d \right)\) đi qua điểm \(A\left( {4;\;8} \right)\) nên \(8 = 4a,\) suy ra \(a = 2\;\,\left( {{\rm{tm}}} \right).\) Khi đó, \(\left( d \right):\;\,y = 2x.\)

Với \(x = - 2\) thay vào \(y = 2x\) ta có: \(y = 2 \cdot \left( { - 2} \right) = - 4.\)

Vậy tung độ của điểm thuộc đồ thị hàm số \(\left( d \right)\) có hoành độ bằng \( - 2\)\( - 4.\)

Câu 2

A. \(A\left( {0;\;\,1} \right).\)               
B. \(B\left( {0;\; - 1} \right).\)      
C. \(O\left( {0;\;\,0} \right).\)               
D. \(D\left( {1;\;\,1} \right).\)

Lời giải

Đáp án đúng là: C

Với \(x = 0\) ta có: \(y = 0 \cdot 0 = 0.\) Vậy đồ thị hàm số bậc nhất \(y = ax\left( {a \ne 0} \right)\) luôn đi qua điểm \(O\left( {0;\;\,0} \right).\)

Câu 4

A. \(y = - 5.\)          
B. \(y = 5.\)        
C. \(y = - 9.\)          
D. \(y = 9.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m > 10.\)             
B. \(m < 10.\)  
C. \(m \ne 10.\)     
D. \(m \ge 10.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Đoạn thẳng.        
B. Tia.           
C. Đường gấp khúc.    
D. Đường thẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP