Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số \(C\left( t \right) = \frac{{120t}}{{{t^2} + 36}}\) (đơn vị: \({\rm{mg/L}}\)), trong đó \(t\) là thời gian sau khi uống thuốc (đơn vị: giờ) và \(t \ge 0\). Tìm nồng độ thuốc tối đa (đơn vị: \({\rm{mg/L}}\)) trong máu của bệnh nhân.
Quảng cáo
Trả lời:
Ta có đạo hàm
\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)
\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).
Ta có bảng biến thiên

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x,y\) lần lượt là số kg cần thiết để sản xuất một bao sản phẩm thức ăn hỗn hợp, \(x,y \ge 0\).
Ta có hệ điều kiện
\(\left\{ \begin{array}{l}0,1.x + 0,4.y \ge 20\\0,6.x + 0,3.y \ge 46,5\\x + y \le 100\end{array} \right.\)
Hàm mục tiêu \(T = 5x + 9y\).
\(\begin{array}{l}\left( {{d_1}} \right):0,1.x + 0,4.y = 20\\\left( {{d_2}} \right):0,6.x + 0,3.y = 46,5\\\left( {{d_3}} \right):x + y = 100\end{array}\)
Các giao điểm \(A\left( {60;35} \right),B\left( {\frac{{20}}{3};\frac{{100}}{3}} \right),C\left( {55;45} \right)\)
Gía trị hàm mục tiêu tại các đỉnh \(T\left( A \right) = 615;T\left( B \right) = \frac{{1900}}{3},T\left( C \right) = 680\). Vậy chi phí thấp nhất là 615(nghìn đồng)
Lời giải
Đáp án: 63.
Xét điểm \[{\rm{K}}\]:
\[2M{A^2} + M{B^2} = 2{\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} = 2{\left( {\overrightarrow {MK} + \overrightarrow {KA} } \right)^2} + {\left( {\overrightarrow {MK} + \overrightarrow {KB} } \right)^2} = 3M{K^2} + 2K{A^2} + K{B^2} + \overrightarrow {MK} .\left( {2\overrightarrow {KA} + \overrightarrow {KB} } \right)\]
Chọn điểm \[{\rm{K}}\] thoả mãn \[2\overrightarrow {KA} + \overrightarrow {KB} = \overrightarrow 0 \] , gọi \[{\rm{K}}\left( {{\rm{x;y;z}}} \right)\]. Khi đó
\[\left\{ \begin{array}{l}2\left( {2 - x} \right) + \left( { - 1 - x} \right) = 0\\2\left( {0 - y} \right) + \left( { - 6 - y} \right) = 0\\2\left( {1 - z} \right) + \left( {7 - z} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = - 2\\z = 3\end{array} \right. \Rightarrow K\left( {1; - 2;3} \right)\]
Khi đó\[2M{A^2} + M{B^2} = 3M{K^2} + 2K{A^2} + K{B^2}\] nhỏ nhất khi \[{\rm{M}}\] là hình chiếu của \[{\rm{K}}\] trên mặt phẳng \[\left( P \right)\]. \[{\rm{MK = d}}\left( {{\rm{K,}}\left( P \right)} \right) = \sqrt 3 \].,\[{\rm{M}}{{\rm{K}}^{\rm{2}}}{\rm{ = 3, K}}{{\rm{A}}^{\rm{2}}} = 9,{\rm{K}}{{\rm{B}}^{\rm{2}}} = 36.\] Suy ra giá trị nhỏ nhất cần tìm là \[{\rm{63}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{\sqrt 3 }}{2}\).
B. \(\frac{{3\sqrt 3 }}{2}\).
C. \(\sqrt 3 \).
D. \(\frac{5}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.