Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số \(C\left( t \right) = \frac{{120t}}{{{t^2} + 36}}\) (đơn vị: \({\rm{mg/L}}\)), trong đó \(t\) là thời gian sau khi uống thuốc (đơn vị: giờ) và \(t \ge 0\). Tìm nồng độ thuốc tối đa (đơn vị: \({\rm{mg/L}}\)) trong máu của bệnh nhân.
Quảng cáo
Trả lời:
Ta có đạo hàm
\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)
\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).
Ta có bảng biến thiên

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 100
Lợi nhuận thu được là \[L(x) = x(1800 - 6x) - (10000 + 600{\rm{x}} - 0,6{{\rm{x}}^2} + 0,004{{\rm{x}}^3}) = - 0,004{{\rm{x}}^3} - 5,4{{\rm{x}}^2} + 1200{\rm{x}} - 10000\]
\[L'(x) = - 0,012{{\rm{x}}^2} - 10,8x + 1200;\,L'(x) = 0 \Leftrightarrow x = 100;x = - 1000\]
Bảng biến thiên

Vậy mỗi tháng cần sản xuất 100 sản phẩm.
Lời giải
Đáp án: 7.
Gọi \((\alpha )\) là mặt phẳng qua \(A\) và vuông góc với \(d.\) Khi đó, \((\alpha ):2x + 2y - z - 5 = 0.\)
Ta có \(d:\frac{{x - 4}}{2} = \frac{{y - 4}}{2} = \frac{{z - 2}}{{ - 1}} \Rightarrow \left\{ \begin{array}{l}x = 4 + 2t\\y = 4 + 2t\\z = 2 - t\end{array} \right.\) thay vao phương trình của \((\alpha )\) được
\(2(4 + 2t) + 2(4 + 2t) - (2 - t) - 5 = 0 \Leftrightarrow 9t + 9 = 0 \Rightarrow t = - 1 \Rightarrow H(2;2;3)\)
Vậy \(a + b + c = 2 + 2 + 3 = 7.\)
Cách khác
Ta có: \(d{\rm{ qua }}M(4;4;2){\rm{, vtcp }}\vec u = (2;2; - 1);\overrightarrow {MA} = ( - 3; - 3; - 3).\)
\[\overrightarrow {MH} = \frac{{\overrightarrow {MA} .\vec u}}{{|\vec u{|^2}}}.\vec u = \frac{{ - 3.2 - 3.2 + 3}}{{4 + 4 + 1}}\vec u = - \vec u = ( - 2; - 2;1)\]\( \Rightarrow H(2;2;3) \Rightarrow a + b + c = 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[x = 9\].
B. \[x = 5\].
C. \[x = 3\].
D. \[x = 7\] .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.