Câu hỏi:

12/11/2025 369 Lưu

Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số \(C\left( t \right) = \frac{{120t}}{{{t^2} + 36}}\) (đơn vị: \({\rm{mg/L}}\)), trong đó \(t\) là thời gian sau khi uống thuốc (đơn vị: giờ) và \(t \ge 0\). Tìm nồng độ thuốc tối đa (đơn vị: \({\rm{mg/L}}\)) trong máu của bệnh nhân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có đạo hàm

\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)

\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).

Ta có bảng biến thiên

Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số C(t) =120t/t^2 + 36 (đơn vị: mg/L (ảnh 1)

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,y\) lần lượt là số kg cần thiết để sản xuất một bao sản phẩm thức ăn hỗn hợp, \(x,y \ge 0\).

Ta có hệ điều kiện

\(\left\{ \begin{array}{l}0,1.x + 0,4.y \ge 20\\0,6.x + 0,3.y \ge 46,5\\x + y \le 100\end{array} \right.\)

Hàm mục tiêu \(T = 5x + 9y\).

\(\begin{array}{l}\left( {{d_1}} \right):0,1.x + 0,4.y = 20\\\left( {{d_2}} \right):0,6.x + 0,3.y = 46,5\\\left( {{d_3}} \right):x + y = 100\end{array}\)

Các giao điểm \(A\left( {60;35} \right),B\left( {\frac{{20}}{3};\frac{{100}}{3}} \right),C\left( {55;45} \right)\)

Gía trị hàm mục tiêu tại các đỉnh \(T\left( A \right) = 615;T\left( B \right) = \frac{{1900}}{3},T\left( C \right) = 680\). Vậy chi phí thấp nhất là 615(nghìn đồng)

Lời giải

Đáp án: 63.

Xét điểm \[{\rm{K}}\]:

\[2M{A^2} + M{B^2} = 2{\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} = 2{\left( {\overrightarrow {MK} + \overrightarrow {KA} } \right)^2} + {\left( {\overrightarrow {MK} + \overrightarrow {KB} } \right)^2} = 3M{K^2} + 2K{A^2} + K{B^2} + \overrightarrow {MK} .\left( {2\overrightarrow {KA} + \overrightarrow {KB} } \right)\]

Chọn điểm \[{\rm{K}}\] thoả mãn \[2\overrightarrow {KA} + \overrightarrow {KB} = \overrightarrow 0 \] , gọi \[{\rm{K}}\left( {{\rm{x;y;z}}} \right)\]. Khi đó

\[\left\{ \begin{array}{l}2\left( {2 - x} \right) + \left( { - 1 - x} \right) = 0\\2\left( {0 - y} \right) + \left( { - 6 - y} \right) = 0\\2\left( {1 - z} \right) + \left( {7 - z} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = - 2\\z = 3\end{array} \right. \Rightarrow K\left( {1; - 2;3} \right)\]

Khi đó\[2M{A^2} + M{B^2} = 3M{K^2} + 2K{A^2} + K{B^2}\] nhỏ nhất khi \[{\rm{M}}\] là hình chiếu của \[{\rm{K}}\] trên mặt phẳng \[\left( P \right)\]. \[{\rm{MK = d}}\left( {{\rm{K,}}\left( P \right)} \right) = \sqrt 3 \].,\[{\rm{M}}{{\rm{K}}^{\rm{2}}}{\rm{ = 3, K}}{{\rm{A}}^{\rm{2}}} = 9,{\rm{K}}{{\rm{B}}^{\rm{2}}} = 36.\] Suy ra giá trị nhỏ nhất cần tìm là \[{\rm{63}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tập xác định của hàm số đã cho là \(D = \left( {1\,;\, + \infty } \right)\).
Đúng
Sai
b) Hàm số đã cho có đúng hai điểm cực trị.
Đúng
Sai
c) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = 2x + 1\).
Đúng
Sai
d) Xét điểm \(A\) thuộc \(\left( C \right)\), tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) luôn lớn hơn \(2,3\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP