Câu hỏi:

12/11/2025 387 Lưu

Cho hàm số \(y = \frac{{2{x^2} - x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\).

a) Tập xác định của hàm số đã cho là \(D = \left( {1\,;\, + \infty } \right)\).
Đúng
Sai
b) Hàm số đã cho có đúng hai điểm cực trị.
Đúng
Sai
c) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = 2x + 1\).
Đúng
Sai
d) Xét điểm \(A\) thuộc \(\left( C \right)\), tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) luôn lớn hơn \(2,3\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai  b) Đúng          c) Đúng           d) Đúng

a) Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

b) Ta có \(y' = \frac{{\left( {4x - 1} \right)\left( {x - 1} \right) - \left( {2{x^2} - x + 2} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^2} - 4x - 1}}{{{{\left( {x - 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2 + \sqrt 6 }}{2}\\x = \frac{{2 - \sqrt 6 }}{2}\end{array} \right.\).

Ta có bảng xét dấu:

Cho hàm số y = (2x^2 - x + 2)/(x - 1) có đồ thị C  (ảnh 1)
Từ bảng xét dấu ta thấy hàm số đã cho có đúng hai điểm cực trị.

c) Ta có \(y = \frac{{2{x^2} - x + 2}}{{x - 1}} = 2x + 1 + \frac{3}{{x - 1}}\) nên đồ thị \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(y = 2x + 1\).

d) Tiệm cận đứng của đồ thị \(\left( C \right)\) là đường thẳng \(x = 1\).

Xét điểm \(A\left( {a\,;\,\frac{{2{a^2} - a + 2}}{{a - 1}}} \right)\,\) thuộc đồ thị \(\left( C \right)\).

Tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\)

\(d = \left| {a - 1} \right| + \frac{{\left| {2a - \frac{{2{a^2} - a + 2}}{{a - 1}} + 1} \right|}}{{\sqrt 5 }} = \left| {a - 1} \right| + \frac{3}{{\sqrt 5 \left| {a - 1} \right|}} \ge 2\sqrt {\left| {a - 1} \right|.\frac{3}{{\sqrt 5 \left| {a - 1} \right|}}} = 2\sqrt {\frac{3}{{\sqrt 5 }}} > 2,3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Lợi nhuận của công ty tại thời điểm \(t = 2\)\(110\) tỷ đồng.
Đúng
Sai
b) Hàm số biểu thị tốc độ tăng trưởng lợi nhuận \(P'\left( t \right) = - 3{t^2} + 24t + 10\).
Đúng
Sai
c) Lợi nhuận của công ty đạt mức tối đa tại thời điểm \(t = 10\).

 

Đúng
Sai
d) Tại thời điểm \(t = 4\) thì tốc độ tăng trưởng lợi nhuận là lớn nhất.
Đúng
Sai

Lời giải

a) Đúng.

Lợi nhuận của công ty tại thời điểm \(t = 2\): \(P\left( 2 \right) =  - {2^3} + 12 \times {2^2} + 60 \times 2 - 50 = 110\) tỷ đồng.

b) Sai.

Hàm số biểu thị tốc độ tăng trưởng lợi nhuận: \(P'\left( t \right) =  - 3{t^2} + 24t + 60\).

c) Đúng.

Hàm số \(P\left( t \right)\) liên tục trên đoạn \(\left[ {0;12} \right]\).

Ta có: \[P'\left( t \right) =  - 3{t^2} + 24t + 60 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \in \left[ {0;12} \right]\\t =  - 2 \notin \left[ {0;12} \right]\end{array} \right.\].

Xét trên đoạn \(\left[ {0;12} \right]\):

+ \(P\left( 0 \right) =  - {0^3} + 12 \times {0^2} + 60 \times 0 - 50 =  - 50\);

+ \(P\left( {10} \right) =  - {10^3} + 12 \times {10^2} + 60 \times 10 - 50 = 750\);

+ \(P\left( {12} \right) =  - {12^3} + 12 \times {12^2} + 60 \times 12 - 50 = 670\).

Vậy lợi nhuận của công ty đạt mức tối đa là \({P_{\max }} = 750\) tỷ đồng tại thời điểm \(t = 10\).

d) Đúng.

Ta có: \(P'\left( t \right) =  - 3{t^2} + 24t + 60 =  - 3\left( {{t^2} - 8t + 16} \right) + 108 =  - 3{\left( {t - 4} \right)^2} + 108 \le 108\).

Dấu bằng xảy ra khi \( - 3{\left( {t - 4} \right)^2} = 0 \Leftrightarrow t = 4\).

Vậy tốc độ tăng trưởng lợi nhuận là lớn nhất tại thời điểm \(t = 4\).

 

Lời giải

Ta có đạo hàm

\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)

\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).

Ta có bảng biến thiên

Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số C(t) =120t/t^2 + 36 (đơn vị: mg/L (ảnh 1)

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).

Câu 6

a) Tập xác định của hàm số \(f\left( x \right)\)\(D = \mathbb{R}\).
Đúng
Sai
b) Đạo hàm \(f'\left( x \right) = \frac{{2x - 4}}{{{x^2} - 4x + 8}}\).
Đúng
Sai
c) Giá trị nhỏ nhất của hàm số trên \(R\) bằng 1.
Đúng
Sai
d) Phương trình \(f\left( x \right) = 2025\) có đúng hai nghiệm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP