Cho hàm số \(y = \frac{{2{x^2} - x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\).
Quảng cáo
Trả lời:
a) Sai b) Đúng c) Đúng d) Đúng
a) Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
b) Ta có \(y' = \frac{{\left( {4x - 1} \right)\left( {x - 1} \right) - \left( {2{x^2} - x + 2} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^2} - 4x - 1}}{{{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2 + \sqrt 6 }}{2}\\x = \frac{{2 - \sqrt 6 }}{2}\end{array} \right.\).
Ta có bảng xét dấu:

c) Ta có \(y = \frac{{2{x^2} - x + 2}}{{x - 1}} = 2x + 1 + \frac{3}{{x - 1}}\) nên đồ thị \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(y = 2x + 1\).
d) Tiệm cận đứng của đồ thị \(\left( C \right)\) là đường thẳng \(x = 1\).
Xét điểm \(A\left( {a\,;\,\frac{{2{a^2} - a + 2}}{{a - 1}}} \right)\,\) thuộc đồ thị \(\left( C \right)\).
Tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) là
\(d = \left| {a - 1} \right| + \frac{{\left| {2a - \frac{{2{a^2} - a + 2}}{{a - 1}} + 1} \right|}}{{\sqrt 5 }} = \left| {a - 1} \right| + \frac{3}{{\sqrt 5 \left| {a - 1} \right|}} \ge 2\sqrt {\left| {a - 1} \right|.\frac{3}{{\sqrt 5 \left| {a - 1} \right|}}} = 2\sqrt {\frac{3}{{\sqrt 5 }}} > 2,3\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đúng.
Lợi nhuận của công ty tại thời điểm \(t = 2\): \(P\left( 2 \right) = - {2^3} + 12 \times {2^2} + 60 \times 2 - 50 = 110\) tỷ đồng.
b) Sai.
Hàm số biểu thị tốc độ tăng trưởng lợi nhuận: \(P'\left( t \right) = - 3{t^2} + 24t + 60\).
c) Đúng.
Hàm số \(P\left( t \right)\) liên tục trên đoạn \(\left[ {0;12} \right]\).
Ta có: \[P'\left( t \right) = - 3{t^2} + 24t + 60 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \in \left[ {0;12} \right]\\t = - 2 \notin \left[ {0;12} \right]\end{array} \right.\].
Xét trên đoạn \(\left[ {0;12} \right]\):
+ \(P\left( 0 \right) = - {0^3} + 12 \times {0^2} + 60 \times 0 - 50 = - 50\);
+ \(P\left( {10} \right) = - {10^3} + 12 \times {10^2} + 60 \times 10 - 50 = 750\);
+ \(P\left( {12} \right) = - {12^3} + 12 \times {12^2} + 60 \times 12 - 50 = 670\).
Vậy lợi nhuận của công ty đạt mức tối đa là \({P_{\max }} = 750\) tỷ đồng tại thời điểm \(t = 10\).
d) Đúng.
Ta có: \(P'\left( t \right) = - 3{t^2} + 24t + 60 = - 3\left( {{t^2} - 8t + 16} \right) + 108 = - 3{\left( {t - 4} \right)^2} + 108 \le 108\).
Dấu bằng xảy ra khi \( - 3{\left( {t - 4} \right)^2} = 0 \Leftrightarrow t = 4\).
Vậy tốc độ tăng trưởng lợi nhuận là lớn nhất tại thời điểm \(t = 4\).
Lời giải
Gọi \(x,y\) lần lượt là số kg cần thiết để sản xuất một bao sản phẩm thức ăn hỗn hợp, \(x,y \ge 0\).
Ta có hệ điều kiện
\(\left\{ \begin{array}{l}0,1.x + 0,4.y \ge 20\\0,6.x + 0,3.y \ge 46,5\\x + y \le 100\end{array} \right.\)
Hàm mục tiêu \(T = 5x + 9y\).
\(\begin{array}{l}\left( {{d_1}} \right):0,1.x + 0,4.y = 20\\\left( {{d_2}} \right):0,6.x + 0,3.y = 46,5\\\left( {{d_3}} \right):x + y = 100\end{array}\)
Các giao điểm \(A\left( {60;35} \right),B\left( {\frac{{20}}{3};\frac{{100}}{3}} \right),C\left( {55;45} \right)\)
Gía trị hàm mục tiêu tại các đỉnh \(T\left( A \right) = 615;T\left( B \right) = \frac{{1900}}{3},T\left( C \right) = 680\). Vậy chi phí thấp nhất là 615(nghìn đồng)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.