Câu hỏi:

12/11/2025 121 Lưu

Cho hàm số \(y = \frac{{2{x^2} - x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\).

a) Tập xác định của hàm số đã cho là \(D = \left( {1\,;\, + \infty } \right)\).
Đúng
Sai
b) Hàm số đã cho có đúng hai điểm cực trị.
Đúng
Sai
c) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = 2x + 1\).
Đúng
Sai
d) Xét điểm \(A\) thuộc \(\left( C \right)\), tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) luôn lớn hơn \(2,3\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai  b) Đúng          c) Đúng           d) Đúng

a) Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

b) Ta có \(y' = \frac{{\left( {4x - 1} \right)\left( {x - 1} \right) - \left( {2{x^2} - x + 2} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^2} - 4x - 1}}{{{{\left( {x - 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2 + \sqrt 6 }}{2}\\x = \frac{{2 - \sqrt 6 }}{2}\end{array} \right.\).

Ta có bảng xét dấu:

Cho hàm số y = (2x^2 - x + 2)/(x - 1) có đồ thị C  (ảnh 1)
Từ bảng xét dấu ta thấy hàm số đã cho có đúng hai điểm cực trị.

c) Ta có \(y = \frac{{2{x^2} - x + 2}}{{x - 1}} = 2x + 1 + \frac{3}{{x - 1}}\) nên đồ thị \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(y = 2x + 1\).

d) Tiệm cận đứng của đồ thị \(\left( C \right)\) là đường thẳng \(x = 1\).

Xét điểm \(A\left( {a\,;\,\frac{{2{a^2} - a + 2}}{{a - 1}}} \right)\,\) thuộc đồ thị \(\left( C \right)\).

Tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\)

\(d = \left| {a - 1} \right| + \frac{{\left| {2a - \frac{{2{a^2} - a + 2}}{{a - 1}} + 1} \right|}}{{\sqrt 5 }} = \left| {a - 1} \right| + \frac{3}{{\sqrt 5 \left| {a - 1} \right|}} \ge 2\sqrt {\left| {a - 1} \right|.\frac{3}{{\sqrt 5 \left| {a - 1} \right|}}} = 2\sqrt {\frac{3}{{\sqrt 5 }}} > 2,3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có đạo hàm

\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)

\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).

Ta có bảng biến thiên

Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số C(t) =120t/t^2 + 36 (đơn vị: mg/L (ảnh 1)

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).

Lời giải

Gọi \(x,y\) lần lượt là số kg cần thiết để sản xuất một bao sản phẩm thức ăn hỗn hợp, \(x,y \ge 0\).

Ta có hệ điều kiện

\(\left\{ \begin{array}{l}0,1.x + 0,4.y \ge 20\\0,6.x + 0,3.y \ge 46,5\\x + y \le 100\end{array} \right.\)

Hàm mục tiêu \(T = 5x + 9y\).

\(\begin{array}{l}\left( {{d_1}} \right):0,1.x + 0,4.y = 20\\\left( {{d_2}} \right):0,6.x + 0,3.y = 46,5\\\left( {{d_3}} \right):x + y = 100\end{array}\)

Các giao điểm \(A\left( {60;35} \right),B\left( {\frac{{20}}{3};\frac{{100}}{3}} \right),C\left( {55;45} \right)\)

Gía trị hàm mục tiêu tại các đỉnh \(T\left( A \right) = 615;T\left( B \right) = \frac{{1900}}{3},T\left( C \right) = 680\). Vậy chi phí thấp nhất là 615(nghìn đồng)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP