Câu hỏi:

12/11/2025 80 Lưu

Một công ty sau khi ra mắt sản phẩm mới đã ghi nhận lợi nhuận \(P\left( t \right)\) (đơn vị: tỷ đồng) sau \(t\) tháng kinh doanh. Trong năm đầu tiên, giả sử mối liên hệ giữa lợi nhuận và thời gian kinh doanh được mô hình hóa bởi hàm số:

\(P\left( t \right) = - {t^3} + 12{t^2} + 60t - 50\), \(0 \le t \le 12\).

a) Lợi nhuận của công ty tại thời điểm \(t = 2\)\(110\) tỷ đồng.
Đúng
Sai
b) Hàm số biểu thị tốc độ tăng trưởng lợi nhuận \(P'\left( t \right) = - 3{t^2} + 24t + 10\).
Đúng
Sai
c) Lợi nhuận của công ty đạt mức tối đa tại thời điểm \(t = 10\).

 

Đúng
Sai
d) Tại thời điểm \(t = 4\) thì tốc độ tăng trưởng lợi nhuận là lớn nhất.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Lợi nhuận của công ty tại thời điểm \(t = 2\): \(P\left( 2 \right) =  - {2^3} + 12 \times {2^2} + 60 \times 2 - 50 = 110\) tỷ đồng.

b) Sai.

Hàm số biểu thị tốc độ tăng trưởng lợi nhuận: \(P'\left( t \right) =  - 3{t^2} + 24t + 60\).

c) Đúng.

Hàm số \(P\left( t \right)\) liên tục trên đoạn \(\left[ {0;12} \right]\).

Ta có: \[P'\left( t \right) =  - 3{t^2} + 24t + 60 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \in \left[ {0;12} \right]\\t =  - 2 \notin \left[ {0;12} \right]\end{array} \right.\].

Xét trên đoạn \(\left[ {0;12} \right]\):

+ \(P\left( 0 \right) =  - {0^3} + 12 \times {0^2} + 60 \times 0 - 50 =  - 50\);

+ \(P\left( {10} \right) =  - {10^3} + 12 \times {10^2} + 60 \times 10 - 50 = 750\);

+ \(P\left( {12} \right) =  - {12^3} + 12 \times {12^2} + 60 \times 12 - 50 = 670\).

Vậy lợi nhuận của công ty đạt mức tối đa là \({P_{\max }} = 750\) tỷ đồng tại thời điểm \(t = 10\).

d) Đúng.

Ta có: \(P'\left( t \right) =  - 3{t^2} + 24t + 60 =  - 3\left( {{t^2} - 8t + 16} \right) + 108 =  - 3{\left( {t - 4} \right)^2} + 108 \le 108\).

Dấu bằng xảy ra khi \( - 3{\left( {t - 4} \right)^2} = 0 \Leftrightarrow t = 4\).

Vậy tốc độ tăng trưởng lợi nhuận là lớn nhất tại thời điểm \(t = 4\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có đạo hàm

\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)

\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).

Ta có bảng biến thiên

Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số C(t) =120t/t^2 + 36 (đơn vị: mg/L (ảnh 1)

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).

Lời giải

Gọi \(x,y\) lần lượt là số kg cần thiết để sản xuất một bao sản phẩm thức ăn hỗn hợp, \(x,y \ge 0\).

Ta có hệ điều kiện

\(\left\{ \begin{array}{l}0,1.x + 0,4.y \ge 20\\0,6.x + 0,3.y \ge 46,5\\x + y \le 100\end{array} \right.\)

Hàm mục tiêu \(T = 5x + 9y\).

\(\begin{array}{l}\left( {{d_1}} \right):0,1.x + 0,4.y = 20\\\left( {{d_2}} \right):0,6.x + 0,3.y = 46,5\\\left( {{d_3}} \right):x + y = 100\end{array}\)

Các giao điểm \(A\left( {60;35} \right),B\left( {\frac{{20}}{3};\frac{{100}}{3}} \right),C\left( {55;45} \right)\)

Gía trị hàm mục tiêu tại các đỉnh \(T\left( A \right) = 615;T\left( B \right) = \frac{{1900}}{3},T\left( C \right) = 680\). Vậy chi phí thấp nhất là 615(nghìn đồng)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập xác định của hàm số đã cho là \(D = \left( {1\,;\, + \infty } \right)\).
Đúng
Sai
b) Hàm số đã cho có đúng hai điểm cực trị.
Đúng
Sai
c) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = 2x + 1\).
Đúng
Sai
d) Xét điểm \(A\) thuộc \(\left( C \right)\), tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) luôn lớn hơn \(2,3\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP