Trong không gian \(Oxyz\) (đơn vị mỗi trục tọa độ là km). Một trạm phát sóng được đặt tại vị trí \(A(0;1;3)\) và có vùng phủ sóng là hình cầu bán kính 5 km. Một con đường thẳng được mô hình hóa bởi đường thẳng \(d:\frac{{x - 1}}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\).
Quảng cáo
Trả lời:
a) Sai b) Đúng c) Sai d) Sai
a) Từ: \(d:\frac{{x - 1}}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\) \( \Rightarrow \overrightarrow u = (1\,; - 1\,;2)\).
b) Mặt cầu tâm \(A(0;1;3)\), bán kính \(R = 5\) có phương trình là \({x^2} + {(y - 1)^2} + {(z - 3)^2} = 25\).
c) Phương trình tham số của \(\)\(d:\left\{ \begin{array}{l}x = 1 + t\\y = - t\\z = 2t\end{array} \right.\)
\(H\) là hình chiếu vuông góc của \(A\)lên \(d\) \( \Rightarrow H \in d \Rightarrow H(t + 1\,; - t\,;2t)\).
Khi đó: \(\overrightarrow {AH} = (t + 1\,; - t - 1\,;2t - 3)\)
\(H\) là hình chiếu vuông góc của \(A\)lên \(d\) \(\)
\(\)\( \Leftrightarrow AH \bot d \Leftrightarrow \overrightarrow {AH} \bot \vec u\)
\(\begin{array}{l} \Leftrightarrow \overrightarrow {AH} .\vec u = 0\\ \Leftrightarrow 6t - 4 = 0\\ \Leftrightarrow t = \frac{2}{3}\end{array}\)
\( \Rightarrow H(\frac{5}{3}; - \frac{2}{3};\frac{4}{3})\)
d) Đường thẳng \(d\) cắt mặt cầu tại \(2\) điểm phân biệt \(M,N\). Tọa độ của \(M,N\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x = 1 + t\\y = - t\\z = 2t\\{x^2} + {(y - 1)^2} + {(z - 3)^2} = 25\end{array} \right.\)
Giải hpt ta được \(\left\{ \begin{array}{l}t = - 1\\t = \frac{7}{3}\end{array} \right.\)\(\)\( \Rightarrow M(0\,;1\,; - 2),N(\frac{{10}}{3}; - \frac{7}{3}\,;\frac{{14}}{3})\)
Khi đó: \(MN = \frac{{20}}{3} \approx 6.67\)
Vậy: Đoạn đường nằm trong vùng phủ sóng là: \(6,67km\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 100
Lợi nhuận thu được là \[L(x) = x(1800 - 6x) - (10000 + 600{\rm{x}} - 0,6{{\rm{x}}^2} + 0,004{{\rm{x}}^3}) = - 0,004{{\rm{x}}^3} - 5,4{{\rm{x}}^2} + 1200{\rm{x}} - 10000\]
\[L'(x) = - 0,012{{\rm{x}}^2} - 10,8x + 1200;\,L'(x) = 0 \Leftrightarrow x = 100;x = - 1000\]
Bảng biến thiên

Vậy mỗi tháng cần sản xuất 100 sản phẩm.
Lời giải
Đáp án: 7.
Gọi \((\alpha )\) là mặt phẳng qua \(A\) và vuông góc với \(d.\) Khi đó, \((\alpha ):2x + 2y - z - 5 = 0.\)
Ta có \(d:\frac{{x - 4}}{2} = \frac{{y - 4}}{2} = \frac{{z - 2}}{{ - 1}} \Rightarrow \left\{ \begin{array}{l}x = 4 + 2t\\y = 4 + 2t\\z = 2 - t\end{array} \right.\) thay vao phương trình của \((\alpha )\) được
\(2(4 + 2t) + 2(4 + 2t) - (2 - t) - 5 = 0 \Leftrightarrow 9t + 9 = 0 \Rightarrow t = - 1 \Rightarrow H(2;2;3)\)
Vậy \(a + b + c = 2 + 2 + 3 = 7.\)
Cách khác
Ta có: \(d{\rm{ qua }}M(4;4;2){\rm{, vtcp }}\vec u = (2;2; - 1);\overrightarrow {MA} = ( - 3; - 3; - 3).\)
\[\overrightarrow {MH} = \frac{{\overrightarrow {MA} .\vec u}}{{|\vec u{|^2}}}.\vec u = \frac{{ - 3.2 - 3.2 + 3}}{{4 + 4 + 1}}\vec u = - \vec u = ( - 2; - 2;1)\]\( \Rightarrow H(2;2;3) \Rightarrow a + b + c = 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[x = 9\].
B. \[x = 5\].
C. \[x = 3\].
D. \[x = 7\] .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.