Câu hỏi:

12/11/2025 154 Lưu

Trong không gian \(Oxyz\) (đơn vị mỗi trục tọa độ là km). Một trạm phát sóng được đặt tại vị trí \(A(0;1;3)\) và có vùng phủ sóng là hình cầu bán kính 5 km. Một con đường thẳng được mô hình hóa bởi đường thẳng \(d:\frac{{x - 1}}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\).

a) Vectơ \(\overrightarrow u = (1;1;2)\) là vectơ chỉ phương của đường thẳng \(d\).
Đúng
Sai
b) Mặt cầu tâm \(A(0;1;3)\), bán kính \(R = 5\) có phương trình là \({x^2} + {(y - 1)^2} + {(z - 3)^2} = 25\).
Đúng
Sai
c) Gọi \(H\)là hình chiếu vuông góc của \(A\)lên \(d\). Điểm \(H\)có hoành độ bằng \( - \frac{2}{3}\).
Đúng
Sai
d) Đoạn đường nằm trong vùng phủ sóng dài 8,16 km. (Kết quả làm tròn đến hàng phần trăm).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai       b) Đúng      c) Sai               d) Sai

a) Từ: \(d:\frac{{x - 1}}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\) \( \Rightarrow \overrightarrow u  = (1\,; - 1\,;2)\).

b) Mặt cầu tâm \(A(0;1;3)\), bán kính \(R = 5\) có phương trình là \({x^2} + {(y - 1)^2} + {(z - 3)^2} = 25\).

c) Phương trình tham số của \(\)\(d:\left\{ \begin{array}{l}x = 1 + t\\y =  - t\\z = 2t\end{array} \right.\)

\(H\) là hình chiếu vuông góc của \(A\)lên \(d\)  \( \Rightarrow H \in d \Rightarrow H(t + 1\,; - t\,;2t)\).

Khi đó: \(\overrightarrow {AH}  = (t + 1\,; - t - 1\,;2t - 3)\)

\(H\) là hình chiếu vuông góc của \(A\)lên \(d\) \(\)

\(\)\( \Leftrightarrow AH \bot d \Leftrightarrow \overrightarrow {AH}  \bot \vec u\)

\(\begin{array}{l} \Leftrightarrow \overrightarrow {AH} .\vec u = 0\\ \Leftrightarrow 6t - 4 = 0\\ \Leftrightarrow t = \frac{2}{3}\end{array}\)

\( \Rightarrow H(\frac{5}{3}; - \frac{2}{3};\frac{4}{3})\) 

d) Đường thẳng \(d\) cắt mặt cầu tại \(2\) điểm phân biệt \(M,N\). Tọa độ của \(M,N\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x = 1 + t\\y =  - t\\z = 2t\\{x^2} + {(y - 1)^2} + {(z - 3)^2} = 25\end{array} \right.\)

Giải hpt ta được \(\left\{ \begin{array}{l}t =  - 1\\t = \frac{7}{3}\end{array} \right.\)\(\)\( \Rightarrow M(0\,;1\,; - 2),N(\frac{{10}}{3}; - \frac{7}{3}\,;\frac{{14}}{3})\)

Khi đó: \(MN = \frac{{20}}{3} \approx 6.67\)

Vậy: Đoạn đường nằm trong vùng phủ sóng là: \(6,67km\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Lợi nhuận của công ty tại thời điểm \(t = 2\)\(110\) tỷ đồng.
Đúng
Sai
b) Hàm số biểu thị tốc độ tăng trưởng lợi nhuận \(P'\left( t \right) = - 3{t^2} + 24t + 10\).
Đúng
Sai
c) Lợi nhuận của công ty đạt mức tối đa tại thời điểm \(t = 10\).

 

Đúng
Sai
d) Tại thời điểm \(t = 4\) thì tốc độ tăng trưởng lợi nhuận là lớn nhất.
Đúng
Sai

Lời giải

a) Đúng.

Lợi nhuận của công ty tại thời điểm \(t = 2\): \(P\left( 2 \right) =  - {2^3} + 12 \times {2^2} + 60 \times 2 - 50 = 110\) tỷ đồng.

b) Sai.

Hàm số biểu thị tốc độ tăng trưởng lợi nhuận: \(P'\left( t \right) =  - 3{t^2} + 24t + 60\).

c) Đúng.

Hàm số \(P\left( t \right)\) liên tục trên đoạn \(\left[ {0;12} \right]\).

Ta có: \[P'\left( t \right) =  - 3{t^2} + 24t + 60 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \in \left[ {0;12} \right]\\t =  - 2 \notin \left[ {0;12} \right]\end{array} \right.\].

Xét trên đoạn \(\left[ {0;12} \right]\):

+ \(P\left( 0 \right) =  - {0^3} + 12 \times {0^2} + 60 \times 0 - 50 =  - 50\);

+ \(P\left( {10} \right) =  - {10^3} + 12 \times {10^2} + 60 \times 10 - 50 = 750\);

+ \(P\left( {12} \right) =  - {12^3} + 12 \times {12^2} + 60 \times 12 - 50 = 670\).

Vậy lợi nhuận của công ty đạt mức tối đa là \({P_{\max }} = 750\) tỷ đồng tại thời điểm \(t = 10\).

d) Đúng.

Ta có: \(P'\left( t \right) =  - 3{t^2} + 24t + 60 =  - 3\left( {{t^2} - 8t + 16} \right) + 108 =  - 3{\left( {t - 4} \right)^2} + 108 \le 108\).

Dấu bằng xảy ra khi \( - 3{\left( {t - 4} \right)^2} = 0 \Leftrightarrow t = 4\).

Vậy tốc độ tăng trưởng lợi nhuận là lớn nhất tại thời điểm \(t = 4\).

 

Lời giải

Ta có đạo hàm

\(C'\left( t \right) = \frac{{120\left( {{t^2} + 36 - 2{t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}} = \frac{{120\left( {36 - {t^2}} \right)}}{{{{\left( {{t^2} + 36} \right)}^2}}}\)

\(C'\left( t \right) = 0 \Leftrightarrow 36 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 6\end{array} \right.\).

Ta có bảng biến thiên

Sau khi một bệnh nhân uống một liều thuốc, nồng độ của thuốc trong máu người đó được mô hình hóa bởi hàm số C(t) =120t/t^2 + 36 (đơn vị: mg/L (ảnh 1)

Vì vậy nồng độ thuốc tối đa là \({\rm{10mg/L}}\).

Câu 5

a) Tập xác định của hàm số đã cho là \(D = \left( {1\,;\, + \infty } \right)\).
Đúng
Sai
b) Hàm số đã cho có đúng hai điểm cực trị.
Đúng
Sai
c) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = 2x + 1\).
Đúng
Sai
d) Xét điểm \(A\) thuộc \(\left( C \right)\), tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) luôn lớn hơn \(2,3\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập xác định của hàm số \(f\left( x \right)\)\(D = \mathbb{R}\).
Đúng
Sai
b) Đạo hàm \(f'\left( x \right) = \frac{{2x - 4}}{{{x^2} - 4x + 8}}\).
Đúng
Sai
c) Giá trị nhỏ nhất của hàm số trên \(R\) bằng 1.
Đúng
Sai
d) Phương trình \(f\left( x \right) = 2025\) có đúng hai nghiệm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP