a) Cho tứ giác \(ABCD\) có \(\widehat {C\,} = 60^\circ ,\widehat {D\,} = 80^\circ ,\widehat {A\,\,} - \widehat {B\,} = 10^\circ .\) Tính số đo của \(\widehat {A\,\,}.\)
b) Tính chiều dài đường trượt \(AC\) trong hình vẽ bên (kết quả làm tròn hàng phần mười).
a) Cho tứ giác \(ABCD\) có \(\widehat {C\,} = 60^\circ ,\widehat {D\,} = 80^\circ ,\widehat {A\,\,} - \widehat {B\,} = 10^\circ .\) Tính số đo của \(\widehat {A\,\,}.\)
b) Tính chiều dài đường trượt \(AC\) trong hình vẽ bên (kết quả làm tròn hàng phần mười).

Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: \[\widehat {A\,\,} + \widehat {B\,} = 360^\circ - \left( {\widehat {C\,} + \widehat {D\,}} \right) = 360^\circ - \left( {60^\circ + 80^\circ } \right) = 220^\circ \]
Mà \[\widehat {A\,\,} - \widehat {B\,} = 10^\circ \] nên ta có \(\widehat {A\,\,} = \frac{{220^\circ + 10^\circ }}{2} = 115^\circ \).
b) Áp dụng định lí Pythagore trong tam giác \(AHB\) vuông tại \(H\) ta có:
\(A{B^2} = A{H^2} + H{B^2}\)
Suy ra \(H{B^2} = A{B^2} - A{H^2} = {5^2} - {3^2} = 25 - 9 = 16\)
Do đó \(HB = \sqrt {16} = 4\) cm, nên \(CH = BC - HB = 10 - 4 = 6\) cm.
Áp dụng định lí Pythagore trong tam giác \(AHC\) vuông tại \(H\) ta có:
\(A{C^2} = A{H^2} + H{C^2} = {3^2} + {6^2} = 9 + 36 = 45\)
Suy ra \(AC = \sqrt {45} \approx 6,7\) m.
Vậy chiều dài đường trượt \(AC\) khoảng \(6,7\) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Diện tích sàn của tự kim tháp là: (m2).
Thể tích của kim tự tháp là: (m3).
b) Diện tích một viên gạch hình vuông là: \({S_{gach}} = {60^2} = 3600\;\;{\rm{c}}{{\rm{m}}^2} = 0,36\;\;{{\rm{m}}^2}\)
Diện tích sàn cần lát của kim tự tháp là: \(1\,\,156 - 156 = 1\,\,000\) (m2).
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên).
Lời giải
Ta có: \(5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0\)
\(\left( {4{x^2} + 8xy + 4{y^2}} \right) + \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} + 2y + 1} \right) = 0\)
\({\left( {2x + 2y} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 0\) \(\left( * \right)\)
Với mọi \(x,y\) ta có: \({\left( {2x + 2y} \right)^2} \ge 0;\,\,{\left( {x - 1} \right)^2} \ge 0;\,\,{\left( {y + 1} \right)^2} \ge 0\)
Do đó \(\left( * \right)\) xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {2x + 2y} \right)^2} = 0\\{\left( {x - 1} \right)^2} = 0\\\,{\left( {y + 1} \right)^2} = 0\end{array} \right.\)
Hay \(\left\{ \begin{array}{l}2x + 2y = 0\\x - 1 = 0\\\,y + 1 = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x + y = 0\\x = 1\\\,y = - 1\end{array} \right.\)
Khi đó \(M = {\left( {x + y} \right)^{2023}} + {\left( {x - 2} \right)^{2024}} + {\left( {y + 1} \right)^{2025}} = {0^{2023}} + {\left( {1 - 2} \right)^{2024}} + {\left( { - 1 + 1} \right)^{2025}} = 1.\)
Câu 3
A. Có các cạnh bên bằng nhau;
B. Có đáy là hình vuông;
C. Có các mặt bên là các tam giác cân;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Hai đỉnh kề với đỉnh \(A\) là \(B\) và \(D\);
B. Hai đỉnh đối nhau là \(A\) và \(C;\) \(B\) và \(D\);
C. Tứ giác \(ABCD\) có 2 đường chéo;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(SH\);
B. \(SA\);
C. \(HA\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


