Cho \(A = \frac{{x + 1}}{{x - 2}} + \frac{{x - 1}}{{x + 2}} + \frac{{{x^2} + 4x}}{{4 - {x^2}}}\) với \(x \ne \pm 2.\)
a) Rút gọn biểu thức \(A.\)
b) Tính giá trị của \(A\) khi \(x = 4.\)
c) Tìm giá trị nguyên của \(x\) để \(A\) nhận giá trị nguyên dương.
Cho \(A = \frac{{x + 1}}{{x - 2}} + \frac{{x - 1}}{{x + 2}} + \frac{{{x^2} + 4x}}{{4 - {x^2}}}\) với \(x \ne \pm 2.\)
a) Rút gọn biểu thức \(A.\)
b) Tính giá trị của \(A\) khi \(x = 4.\)
c) Tìm giá trị nguyên của \(x\) để \(A\) nhận giá trị nguyên dương.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
\(A = \frac{{x + 1}}{{x - 2}} + \frac{{x - 1}}{{x + 2}} + \frac{{{x^2} + 4x}}{{4 - {x^2}}}\) với \(x \ne \pm 2.\)
a) Với \(x \ne \pm 2\), ta có:
\(A = \frac{{x + 1}}{{x - 2}} + \frac{{x - 1}}{{x + 2}} + \frac{{{x^2} + 4x}}{{4 - {x^2}}}\)
\[ = \frac{{x + 1}}{{x - 2}} + \frac{{x - 1}}{{x + 2}} - \frac{{{x^2} + 4x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{x^2} + 4x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{{x^2} + 3x + 2 + {x^2} - 3x + 2 - {x^2} - 4x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{{x^2} - 4x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{x - 2}}{{x + 2}}\].
Vậy với \(x \ne \pm 2\) ta có \(A = \frac{{x - 2}}{{x + 2}}.\)
b) Thay \(x = 4\) (thỏa mãn) vào biểu thức \(A\) ta có: \(A = \frac{{4 - 2}}{{4 + 2}} = \frac{2}{6} = \frac{1}{3}.\)
c) Với \(x \ne \pm 2\) và \(x \in \mathbb{Z}\) ta có: \(A = \frac{{x - 2}}{{x + 2}} = \frac{{x + 2 - 4}}{{x + 2}} = 1 - \frac{4}{{x + 2}}\)
Khi đó, để \(A\) nhận giá trị nguyên thì \(x + 2 \in \)Ư\(\left( 4 \right) = \left\{ { \pm 1; \pm 2; \pm 4} \right\}\)
Ta có bảng sau:
|
\(x + 2\) |
\( - 1\) |
\(1\) |
\( - 2\) |
\(2\) |
\( - 4\) |
\(4\) |
|
\(x\) \((x \ne \pm 2\) và \(x \in \mathbb{Z})\) |
\( - 3\) (thỏa mãn) |
\( - 1\) (thỏa mãn) |
\( - 4\) (thỏa mãn) |
\(0\) (thỏa mãn) |
\( - 6\) (thỏa mãn) |
\(2\) (không thỏa mãn) |
|
\(A = \frac{{x - 2}}{{x + 2}}\) \((A\) nguyên dương) |
\(5\) (thỏa mãn) |
\( - 3\) (không thỏa mãn) |
\(3\) (thỏa mãn) |
\( - 1\) (không thỏa mãn) |
\(2\) (thỏa mãn) |
|
Vậy \(x \in \left\{ { - 3; - 4; - 6} \right\}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \({\left( {x + 2} \right)^2} - 4\left( {x + 2} \right) + 4 = {\left( {x + 2 - 2} \right)^2} = {x^2}.\)
Lời giải
) Do \(AC\) là tia phân giác \(\widehat {BAD}\) nên ta có \(\widehat {BAD} = 2\widehat {DAC} = 2 \cdot 40^\circ = 80^\circ \)
Xét tứ giác \(ABCD\) có: \[\widehat {BAD} + \widehat {B\,} + \widehat {BCD} + \widehat {D\,} = 360^\circ \]
Suy ra \[\widehat {BCD} = 360^\circ - \left( {\widehat {BAD} + \widehat {B\,} + \widehat {D\,}} \right) = 360^\circ - \left( {80^\circ + 90^\circ + 90^\circ } \right) = 100^\circ \].
b) Xét \(\Delta ABC\) vuông tại \(B\), theo định lí Pythagore ta có:
\(A{C^2} = A{B^2} + B{C^2} = {7,66^2} + {6,43^2} = 100,0205\)
Suy ra \(AC = \sqrt {100,0205} \approx 10,0\) m.
Khi đó vận động viên cần bơi với vận tốc là \(\frac{{10,0}}{{20}} = 0,5\) (m/s).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(7xy\left( {2x - 3y + 4xy} \right)\);
B. \(xy\left( {14x - 21y + 28xy} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(AB\) và \(BC\) là hai cạnh kề nhau;
B. \(BC\) và \(AD\) là hai cạnh đối nhau;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
