Một hồ bơi có dạng tứ giác \(ABCD\) được mô tả như hình vẽ bên. Biết \(AC\) là tia phân giác \(\widehat {BAD}\) và \(\widehat {DAC} = 40^\circ \).
a) Tính \(\widehat {BCD}.\)
b) Biết \(AB = 7,66\) m và \(BC = 6,43\) m. Một vận động viên bơi lội muốn bơi từ \(A\) đến \(C\) trong 20 giây thì cần bơi với vận tốc là bao nhiêu (làm tròn kết quả đến hàng phần mười)?
Một hồ bơi có dạng tứ giác \(ABCD\) được mô tả như hình vẽ bên. Biết \(AC\) là tia phân giác \(\widehat {BAD}\) và \(\widehat {DAC} = 40^\circ \).
a) Tính \(\widehat {BCD}.\)
b) Biết \(AB = 7,66\) m và \(BC = 6,43\) m. Một vận động viên bơi lội muốn bơi từ \(A\) đến \(C\) trong 20 giây thì cần bơi với vận tốc là bao nhiêu (làm tròn kết quả đến hàng phần mười)?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
) Do \(AC\) là tia phân giác \(\widehat {BAD}\) nên ta có \(\widehat {BAD} = 2\widehat {DAC} = 2 \cdot 40^\circ = 80^\circ \)
Xét tứ giác \(ABCD\) có: \[\widehat {BAD} + \widehat {B\,} + \widehat {BCD} + \widehat {D\,} = 360^\circ \]
Suy ra \[\widehat {BCD} = 360^\circ - \left( {\widehat {BAD} + \widehat {B\,} + \widehat {D\,}} \right) = 360^\circ - \left( {80^\circ + 90^\circ + 90^\circ } \right) = 100^\circ \].
b) Xét \(\Delta ABC\) vuông tại \(B\), theo định lí Pythagore ta có:
\(A{C^2} = A{B^2} + B{C^2} = {7,66^2} + {6,43^2} = 100,0205\)
Suy ra \(AC = \sqrt {100,0205} \approx 10,0\) m.
Khi đó vận động viên cần bơi với vận tốc là \(\frac{{10,0}}{{20}} = 0,5\) (m/s).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \({\left( {x + 2} \right)^2} - 4\left( {x + 2} \right) + 4 = {\left( {x + 2 - 2} \right)^2} = {x^2}.\)
Lời giải
Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)
\[\left( {{x^2} + 2xy + {y^2}} \right) + 6\left( {x + y} \right) + {y^2} + 8 = 0\]
\[{\left( {x + y} \right)^2} + 2 \cdot \left( {x + y} \right) \cdot 3 + 9 - 1 = - {y^2}\]
\[{\left( {x + y + 3} \right)^2} - 1 = - {y^2}\]
\[\left( {x + y + 3 - 1} \right)\left( {x + y + 3 + 1} \right) = - {y^2}\]
\[\left( {x + y + 2} \right)\left( {x + y + 4} \right) = - {y^2}\]
\[\left( {x + y + 2024 - 2022} \right)\left( {x + y + 2024 - 2020} \right) = - {y^2}\]
\[\left( {P - 2022} \right)\left( {P - 2020} \right) = - {y^2}\]
Mà \({y^2} \ge 0\) với mọi \(y\) nên \( - {y^2} \le 0\) với mọi \(y\)
Do đó \[\left( {P - 2022} \right)\left( {P - 2020} \right) \le 0\] \(\left( * \right)\)
Lại có \(\left( {P - 2020} \right) - 2 < P - 2020\) hay \(P - 2022 < P - 2020\)
Suy ra \(\left( * \right)\) xảy ra khi \(P - 2022 \le 0 \le P - 2020\)
Nên \(2020 \le P \le 2022\)
Vậy GTLN của \(P\) bằng 2022 khi \(\left\{ \begin{array}{l}x + y + 2 = 0\\ - {y^2} = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x = - 2\\y = 0\end{array} \right.\);
GTNN của \(P\) bằng 2020 khi \(\left\{ \begin{array}{l}x + y + 4 = 0\\ - {y^2} = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x = - 4\\y = 0\end{array} \right.\).
Câu 3
A. \(7xy\left( {2x - 3y + 4xy} \right)\);
B. \(xy\left( {14x - 21y + 28xy} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(AB\) và \(BC\) là hai cạnh kề nhau;
B. \(BC\) và \(AD\) là hai cạnh đối nhau;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.