Câu hỏi:

15/11/2025 37 Lưu

Kết quả của phép tính \(\frac{{5x + 7}}{{3xy}} - \frac{{2x - 5}}{{3xy}}\) là

A. \(\frac{{3x + 2}}{{3xy}}\);                 
B. \(\frac{{3x - 2}}{{3xy}}\); 
C. \(\frac{{x - 4}}{{xy}}\); 
D. \(\frac{{x + 4}}{{xy}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(\frac{{5x + 7}}{{3xy}} - \frac{{2x - 5}}{{3xy}} = \frac{{5x + 7 - 2x + 5}}{{3xy}} = \frac{{3x + 12}}{{3xy}} = \frac{{3\left( {x + 4} \right)}}{{3xy}} = \frac{{x + 4}}{{xy}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đường cao mặt bên hình chóp chính là trung đoạn \[d = 67,5\;\;{\rm{mm}}\]

Diện tích xung quanh của khối rubik đó là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 234 \cdot 67,5 = 7\,\,897,5\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Đáy là tam giác đều có cạnh là \[234:3 = 78\;\;{\rm{cm}}\];

Chiều cao của tam giác đáy là \[67,5\;\;{\rm{cm}}\].

Diện tích mặt đáy của khối rubik đó là: \(\frac{1}{2} \cdot 78 \cdot 67,5 = 2\,\,632,5\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)

Diện tích toàn phần của khối rubik đó là: \({S_{tp}} = 7\,\,897,5 + 2\,632,5 = 10\,\,530\,\,\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)

b) Thể tích của khối rubik đó là: \(V = \frac{1}{3} \cdot 2\,\,632,5 \cdot 63,7 = 55\,\,896,75\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Lời giải

A = \frac{4}{{{x^2} + x + 1}}\) và \(B = \frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\) với \(x \ne 1.\)

a) Thay \(x =  - 2\) (thỏa mãn) vào biểu thức \(A\) ta được:

\[A = \frac{4}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right) + 1}} = \frac{4}{{4 - 2 + 1}} = \frac{4}{3}.\]

b) Ta có \(A = B + C\) nên \(C = A - B\)

\(C = \frac{4}{{{x^2} + x + 1}} - \left( {\frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}} \right)\)

\( = \frac{4}{{{x^2} + x + 1}} - \frac{2}{{1 - x}} - \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\)

\( = \frac{4}{{{x^2} + x + 1}} + \frac{2}{{x - 1}} - \frac{{2{x^2} + 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{4\left( {x - 1} \right) + 2\left( {{x^2} + x + 1} \right) - \left( {2{x^2} + 4x} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{4x - 4 + 2{x^2} + 2x + 2 - 2{x^2} - 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x - 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{2}{{{x^2} + x + 1}}\)

Vậy với \(x \ne 1\) ta có \(C = \frac{2}{{{x^2} + x + 1}}.\)

c) Với \(x \ne 1\) ta có \[C = \frac{2}{{{x^2} + x + 1}} = \frac{2}{{{x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4}}} = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}}\]

Mà \({\left( {x + \frac{1}{2}} \right)^2} \ge 0\) nên \({\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\), do đó \[C = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\] với mọi \(x \ne 1.\)

Câu 3

A. \( - \frac{7}{3}\);   
B. \( - \frac{5}{3}\);  
C. \(\frac{5}{3}\);    
D. \(\frac{7}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Các cạnh đáy bằng nhau;                       

B. Mặt đáy là hình vuông;

C. Các cạnh bên bằng nhau;                              
D. Mặt bên là các tam giác cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\left( {x - 2y} \right)^3}\);          
B. \({\left( {x + 2y} \right)^3}\);      
C. \({x^3} - 8{y^3}\); 
D. \({x^3} + 8{y^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP