Cho hai số biết tổng của chúng bằng 100, nếu tăng số thứ nhất lên 2 lần và cộng thêm số thứ hai 5 đơn vị thì số thứ nhất gấp 5 lần số thứ 2. Gọi \(x\) là số thứ nhất, khi đó:
Quảng cáo
Trả lời:
a) Đúng. Gọi \(x\) là số thứ nhất thì số thứ hai là \(100 - x.\)
b) Đúng. Khi tăng số thứ nhất lên 2 lần thì số thứ nhất lúc này là \(2x.\)
Khi cộng thêm số thứ hai 5 đơn vị thì số thứ hai lúc này là \(100 - x + 5 = 105 - x.\)
c) Đúng. Khi đó, số thứ nhất gấp 5 lần số thứ hai nên ta có phương trình: \(2x = 5\left( {105 - x} \right)\).
d) Sai. Giải phương trình \(2x = 5\left( {105 - x} \right)\)
\(2x = 525 - 5x\)
\(2x + 5x = 525\)
\(7x = 525\) \[\]
\(x = 75\) (thỏa mãn).
Khi đó số thứ nhất là 75, số thứ hai là \(100 - 75 = 25.\)
Vậy hai số cần tìm là: 75 và 25.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 120.
Đổi \(20\)phút \[ = \frac{1}{3}\] giờ.
Gọi quãng đường AB là \[x\] (km) \(\left( {x > 0} \right).\)
Thời gian đi từ A đến B là \(\frac{x}{{40}}\) (giờ).
Lúc về người đó tăng vận tốc thêm \(5\) km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\] (km/h).
Thời gian đi từ B về A là \(\frac{x}{{45}}\) (giờ).
Vì thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút \[( = \frac{1}{3}\] giờ) nên ta có phương trình:
\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)
\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{{120}}{{360}}\)
\(9x - 8x = 120\)
\(x = 120\) (thỏa mãn).
Vậy quãng đường AB là \(120\) km.
Câu 2
Lời giải
Đáp án đúng là: D
Ta có: \[5x-\left( {6-x} \right) = 12\]
\[5x-6 + x-12 = 0\]
\(6x-18 = 0.\)
Vậy ta chọn phương án D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.