Câu hỏi:

18/11/2025 93 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Trên cạnh \(SC\) và \(AB\) lần lượt lấy hai điểm \(I\) và \(J\) sao cho \(CI = \frac{2}{3}SC\) và \(BJ = \frac{2}{3}AB.\)

(a) Tìm giao điểm của đường thẳng \(SD\) và mặt phẳng \(\left( {ABI} \right).\)

(b) Chứng minh rằng \(IJ{\rm{//}}\left( {SAD} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành. Trên cạnh  S C  và  A B  lần lượt lấy hai điểm  I  và  J  sao cho  C I = 2/ 3 S C  và  B J = 2 /3 A B . (ảnh 1)

a) Ta có: \(I \in SC\) mà \(SC \subset \left( {SCD} \right) \Rightarrow I \in \left( {SCD} \right).\)

Mà \(I \in \left( {ABI} \right).\)

Hơn nữa: \(AB{\rm{//}}CD;\) \(AB \subset \left( {ABI} \right)\) và \(CD \subset \left( {SCD} \right).\)

\( \Rightarrow d = \left( {ABI} \right) \cap \left( {SCD} \right)\) sao cho \(d\) đi qua \(I\) và song song với \(AB,\,CD.\)

Trong \(\left( {SCD} \right)\) gọi \(K = d \cap SD.\)

Khi đó \(K \in d\) mà \[d \subset \left( {ABI} \right).\]

\( \Rightarrow K = SD \cap \left( {ABI} \right).\)

b) Ta có: \(CI = \frac{2}{3}SC \Rightarrow SI = \frac{1}{3}SC \Rightarrow \frac{{SI}}{{SC}} = \frac{1}{3};\)

\(BJ = \frac{2}{3}AB \Rightarrow AJ = \frac{1}{3}AB \Rightarrow \frac{{AJ}}{{AB}} = \frac{1}{3}.\)

\( \Rightarrow \frac{{SI}}{{SC}} = \frac{{AJ}}{{AB}} = \frac{1}{3}.\)

Lại có: \(KI{\rm{//}}CD\) (do \(d{\rm{//}}CD\)) nên theo hệ quả định lí Thalés có:

\(\frac{{KI}}{{CD}} = \frac{{SI}}{{SC}} \Rightarrow \frac{{KI}}{{CD}} = \frac{{AJ}}{{AB}}.\)

Mặt khác \(CD = AB\) (do \(ABCD\) là hình bình hành).

\( \Rightarrow KI = AJ.\)

Mà \(KI{\rm{//}}AJ\) (do \(d{\rm{//AB}}\))

Suy ra \(AKIJ\) là hình bình hành.

\( \Rightarrow IJ{\rm{//}}AK.\)

Hơn nữa: \(AK \subset \left( {SAD} \right)\) và \(IJ \not\subset \left( {SAD} \right).\)

Từ đó ta có \(IJ{\rm{//}}\left( {SAD} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình hộp  A B C D . A ′ B ′ C ′ D ′  có  A C  cắt  B D  tại  O  và  A ′ C ′  cắt  B ′ D ′  tại  O ′ .  Khi đó  ( A B ′ D ′ )  song song với mặt phẳng nào dưới đây? (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(BB'{\rm{//}}DD'\) và \(BB' = DD'.\)

\( \Rightarrow BB'D'D\) là hình bình hành nên \(B'D'{\rm{//}}BD.\)

Mà \(BD \subset \left( {BDC'} \right)\) và \(B'D' \not\subset \left( {BDC'} \right).\)

\( \Rightarrow B'D'{\rm{//}}\left( {BDC'} \right).\)

Tương tự ta cũng có \(AD'{\rm{//}}\left( {BDC'} \right).\)

Ta có: \(B'D'{\rm{//}}\left( {BDC'} \right);\,\,AD'{\rm{//}}\left( {BDC'} \right)\) và \(B'D' \cap AD' = D'\) trong \(\left( {AB'D'} \right).\)

\( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {BDC'} \right).\)

Lời giải

Đáp án đúng là: C

Ta có: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 3{u_n}\end{array} \right.,\forall n \in {\mathbb{N}^*} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3,\forall n \in {\mathbb{N}^*}.\)

Suy ra dãy số \(\left( {{u_n}} \right)\) đã cho là cấp số nhân với công sai \(q = 3\) và số hạng đầu \({u_1} = 3.\)

Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là:

\({u_n} = {3.3^{n - 1}} = {3.3^n}{.3^{ - 1}} = {3^n}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SBC} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SAB} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABCD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP