Câu hỏi:

18/11/2025 18 Lưu

Cho hình hộp \(ABCD.A'B'C'D'\) có \(AC\) cắt \(BD\) tại \(O\) và \(A'C'\) cắt \(B'D'\) tại \(O'.\) Khi đó \(\left( {AB'D'} \right)\) song song với mặt phẳng nào dưới đây?

\(\left( {A'OC'} \right).\)

\(\left( {BDA'} \right).\)

\(\left( {BDC'} \right).\)

\(\left( {BCD} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho hình hộp  A B C D . A ′ B ′ C ′ D ′  có  A C  cắt  B D  tại  O  và  A ′ C ′  cắt  B ′ D ′  tại  O ′ .  Khi đó  ( A B ′ D ′ )  song song với mặt phẳng nào dưới đây? (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(BB'{\rm{//}}DD'\) và \(BB' = DD'.\)

\( \Rightarrow BB'D'D\) là hình bình hành nên \(B'D'{\rm{//}}BD.\)

Mà \(BD \subset \left( {BDC'} \right)\) và \(B'D' \not\subset \left( {BDC'} \right).\)

\( \Rightarrow B'D'{\rm{//}}\left( {BDC'} \right).\)

Tương tự ta cũng có \(AD'{\rm{//}}\left( {BDC'} \right).\)

Ta có: \(B'D'{\rm{//}}\left( {BDC'} \right);\,\,AD'{\rm{//}}\left( {BDC'} \right)\) và \(B'D' \cap AD' = D'\) trong \(\left( {AB'D'} \right).\)

\( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {BDC'} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({u_n}\) là quãng đường đi lên của người đó sau \(n\) lần kéo lên \(\left( {n \in {\mathbb{N}^*}} \right).\)

Sau lần kéo lên đầu tiên quãng đường đi lên của người đó là:

\({u_1} = 100.80\% = 100.0,8 = 80\) (m).

Sau lần kéo lên thứ hai quãng đường đi lên của người đó là:

\({u_2} = 80.80\% = 80.0,8\) (m).

Sau lần kéo lên thứ ba quãng đường đi lên của người đó là:

\({u_3} = 80.0,8.80\% = 80.0,8.0,8 = 80.0,{8^2}\) (m).

Khi đó, dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = 80\) và công bội \(q = 0,8.\)

Ta có công thức tổng quát \({u_n} = 80.{\left( {0,8} \right)^{n - 1}}\) (m).

Tổng quãng đường người đó đi được sau 10 lần kéo lên là:

\({S_{10}} = \frac{{80\left( {1 - 0,{8^{10}}} \right)}}{{1 - 0,8}} \approx 357,05\,\,\left( {\rm{m}} \right).\)

Lời giải

Đáp án đúng là: C

Ta có: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 3{u_n}\end{array} \right.,\forall n \in {\mathbb{N}^*} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3,\forall n \in {\mathbb{N}^*}.\)

Suy ra dãy số \(\left( {{u_n}} \right)\) đã cho là cấp số nhân với công sai \(q = 3\) và số hạng đầu \({u_1} = 3.\)

Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là:

\({u_n} = {3.3^{n - 1}} = {3.3^n}{.3^{ - 1}} = {3^n}.\)

Câu 3

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABCD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SBC} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SAB} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP