(a) Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_1} = 2\) và \({u_{n + 1}} = {u_n} - 3\). Chứng minh \(\left( {{u_n}} \right)\)là một cấp số cộng và tìm số hạng thứ 5 của cấp số cộng.
(b) Người ta xếp các hình vuông kề với nhau như trong hình dưới đây, mỗi hình vuông có độ dài cạnh bằng nửa độ dài cạnh của hình vuông trước nó. Nếu hình vuông đầu tiên có cạnh dài 10 cm thì trên tia \[Ax\] cần có một đoạn thẳng dài bao nhiêu centimét để có thể xếp được tất cả các hình vuông đó?

Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: \({u_{n + 1}} = {u_n} - 3 \Rightarrow {u_{n + 1}} - {u_n} = - 3\) là một số không đổi nên \(\left( {{u_n}} \right)\) là một cấp số cộng với công sai là \(d = - 3.\)
Do đó, \({u_5} = {u_1} + \left( {5 - 1} \right)d = 2 + \left( {5 - 1} \right) \cdot \left( { - 3} \right) = - 10.\)
b) Tổng độ dài các cạnh nằm trên tia \[Ax\] của các hình vuông đó là:
\(S = 10 + 5 + \frac{5}{2} + \frac{5}{{{2^2}}} + ....\)
Dãy số \(10;\,\,5;\,\,\frac{5}{2};\,\,\frac{5}{{{2^2}}};...\,\,\)là một cấp số nhân lùi vô hạn với \({u_1} = 10;\,q = \frac{1}{2}\).
Do đó ta có \(S = 10 + 5 + \frac{5}{2} + \frac{5}{{{2^2}}} + .... = \frac{{10}}{{1 - \frac{1}{2}}} = 20\) (cm).
Vậy trên tia \[Ax\] cần có một đoạn thẳng dài 20 centimét.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(AK\) với \(K\) là giao điểm của \(IJ\) và \(BC.\)
\(AH\) với \(H\) là giao điểm của \(IJ\) và \(AB.\)
\(AG\) với \(G\) là giao điểm của \(IJ\) và \(AD.\)
\(AF\) với \(F\) là giao điểm của \(IJ\) và \(CD.\)
Lời giải
Đáp án đúng là: D

Trong mặt phẳng \(\left( {SCD} \right)\), kẻ \[IJ \cap CD = F.\]
\( \Rightarrow \left\{ \begin{array}{l}F \in IJ \subset \left( {AIJ} \right)\\F \in CD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow F \in \left( {AIJ} \right) \cap \left( {ABCD} \right).\)
Mặt khác \(A \in \left( {AIJ} \right) \cap \left( {ABCD} \right).\)
Vậy \(\left( {ABCD} \right) \cap \left( {AIJ} \right) = AF.\)
Câu 2
\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).
\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).
\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).
\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).
Lời giải
Đáp án đúng là: C
Theo định nghĩa, ta có hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) nếu hàm số \(y = f\left( x \right)\) liên tục \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).
Câu 3
Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a{\rm{//}}b.\)
Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(b{\rm{//}}\left( P \right).\)
Nếu \[\left( P \right){\rm{//}}\left( Q \right)\] thì \(a\) và \(b\) hoặc song song hoặc chéo nhau.
Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a{\rm{//}}\left( Q \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\({u_7} = {u_4}{q^3}.\)
\({u_7} = {u_4}{q^4}.\)
\({u_7} = {u_4}{q^5}.\)
\({u_7} = {u_4}{q^6}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( {ABD} \right).\)
\(\left( {ACD} \right).\)
\(\left( {ABC} \right).\)
\(\left( {BCD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(y = 1 + \sin x.\)
\(y = \sin x.\)
\(y = 1 - \sin x.\)
\(y = \cos x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(x = \frac{{2\pi }}{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)
\(x = \pm \frac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}.\)
\(x = \pm \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)
\(x = \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
