Một lô hàng cà phê Việt Nam khi xuất khẩu sang Đức phải qua hai lần kiểm tra, nếu cả hai lần đều đạt thì lô hàng đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 97% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 96% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tính xác suất để một lô hàng cà phê Việt Nam đủ tiêu chuẩn xuất khẩu (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi A là biến cố “Sản phẩm qua lần kiểm tra thứ nhất”;
B là biến cố “Sản phẩm qua lần kiểm tra thứ hai”.
Theo đề ta có \(P\left( A \right) = 0,97;P\left( {B|A} \right) = 0,96\).
Khi đó \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = 0,97.0,96 \approx 0,93\).
Trả lời: 0,93.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{3}{5}\).
b) Xác suất của biến cố B với điều kiện A là \(P\left( {B|A} \right) = \frac{1}{3}\).
c) Xác suất của biến cố \(A \cup B\) là \(P\left( {A \cup B} \right) = 1\).
Lời giải
a) .\(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{2}{5} = \frac{3}{5}\)
b) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{1}{5}:\frac{2}{5} = \frac{1}{2}\).
c) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{2}{5} + \frac{3}{5} - \frac{1}{5} = \frac{4}{5}\).
d) \(P\left( {\overline A |\overline B } \right) = \frac{{P\left( {\overline A \overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{1 - P\left( {A \cup B} \right)}}{{P\left( {\overline B } \right)}} = \frac{{1 - \frac{4}{5}}}{{\frac{2}{5}}} = \frac{1}{2}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
A. \(0,35\).
Lời giải
Câu 3
a) Xác suất để cả hai người được chọn là nữ bằng \(\frac{1}{{15}}\).
b) Xác suất để ít nhất một nữ được chọn bằng \(\frac{{14}}{{15}}\).
c) Xác suất để cả hai nữ được chọn nếu biết rằng có ít nhất một nữ đã được chọn là \(\frac{4}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\frac{5}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Tỉ lệ người dân nghiện hút thuốc nhưng không nghiện uống rượu là 0,11.
b) Tỉ lệ người dân không nghiện hút thuốc và không nghiện uống rượu là 0,75.
c) Chọn ngẫu nhiên một người dân ở vùng này. Nếu biết rằng người đó nghiện hút thuốc thì xác suất người đó cũng nghiện uống rượu là 0,45.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 0,93.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.