Câu hỏi:

18/11/2025 7 Lưu

Cho các dãy số sau. Dãy số nào là dãy số tăng?

A. 1; 1; 1; 1; 1; .... 
B. \(1; - \frac{1}{2};\frac{1}{4}; - \frac{1}{8};\frac{1}{{16}};...\).       
C. 1; 3; 5; 7; 9; …. 
D. \(1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};...\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Xét đáp án A: 1; 1; 1; 1; 1; 1; …đây là dãy không đổi nên không tăng không giảm. Loại A.

Xét đáp án B: \(1; - \frac{1}{2};\frac{1}{4}; - \frac{1}{8};\frac{1}{{16}};...\)\({u_1} > {u_2} < {u_3}\) nên loại B.

Xét đáp án C: 1; 3; 5; 7; 9; … có \({u_n} < {u_{n + 1}},n \in {\mathbb{N}^*}\) nên đây là dãy tăng. Chọn C.

Xét đáp án D: \(1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};...\)\({u_1} > {u_2} > {u_3} > ... > {u_n} > ...\). Loại D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các quãng đường khi bóng đi xuống tạo thành một cấp số nhân lùi vô hạn có \({u_1} = 10\)\(q = \frac{3}{4}\).

Tổng các quãng đường khi bóng đi xuống là \(S = \frac{{{u_1}}}{{1 - q}}\)\( = \frac{{10}}{{1 - \frac{3}{4}}}\) \( = 40\).

Tổng quãng đường bóng đi được đến khi bóng dừng hẳn \(2S - 10 = 70\) (m).

Câu 2

A. \({u_1} = 3;q = - 5\).                   
B. \({u_1} = - 3;q = 5\).                 
C. \({u_1} = 4;q = - 3\).    
D. \({u_1} = -4;q =  3\).    

Lời giải

Đáp án đúng là: D

\(q = \frac{{{u_5}}}{{{u_4}}} = \frac{{ - 324}}{{ - 108}} = 3\).

\({u_4} = {u_1}{q^3}\)\( \Leftrightarrow - 108 = {u_1} \cdot {3^3}\)\( \Leftrightarrow {u_1} = - 4\).

Câu 3

A. Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\)\(a \subset \left( \alpha \right),b \subset \left( \beta \right)\) thì \(a{\rm{//}}b\).                 
B. Nếu \(a{\rm{//}}\left( \alpha \right)\)\(b{\rm{//}}\left( \beta \right)\) thì \(a{\rm{//}}b\).                 
C. Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\)\(a \subset \left( \alpha \right)\) thì \(a{\rm{//}}\left( \beta \right)\).                  
D. Nếu \(a{\rm{//}}b\)\(a \subset \left( \alpha \right),b \subset \left( \beta \right)\) thì \(\left( \alpha \right){\rm{//}}\left( \beta \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\].   
B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \cdot g\left( x \right)} \right] = L \cdot M\].      
C. \[\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\].        
D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = f\left( {{x_0}} \right)\).     
B. \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\).                         
C. \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right)\).                                              
D. \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({u_3} = - \frac{8}{3}\).      
B. \({u_3} = 2\).          
C. \({u_3} = - 2\).       
D. \({u_3} = \frac{8}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP