Câu hỏi:

18/11/2025 39 Lưu

Trong các dãy số sau, dãy số nào không phải là cấp số cộng?

A. \(\frac{1}{2};\frac{3}{2};\frac{5}{2};\frac{7}{2};\frac{9}{2}\).       
B. \(1;1;1;1;1\).           
C. \( - 8; - 6; - 4; - 2;0\).          
D. \(3;1; - 1; - 2; - 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đáp án A: Là cấp số cộng với \({u_1} = \frac{1}{2};d = 1\).

Đáp án B: Là cấp số cộng với \({u_1} = 1;d = 0\).

Đáp án C: Là cấp số cộng với \({u_1} = - 8;d = 2\).

Đáp án D: Không là cấp số cộng vì \({u_2} = {u_1} + \left( { - 2} \right);{u_4} = {u_3} + \left( { - 1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

\(\mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 1} \right) = 2\)\(\mathop {\lim }\limits_{x \to {1^ - }} \left( {1 - x} \right) = 0\)\(x \to {1^ - }\) nên \(1 - x > 0\).

Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 1}}{{1 - x}} = + \infty \).

Lời giải

Các quãng đường khi bóng đi xuống tạo thành một cấp số nhân lùi vô hạn có \({u_1} = 10\)\(q = \frac{3}{4}\).

Tổng các quãng đường khi bóng đi xuống là \(S = \frac{{{u_1}}}{{1 - q}}\)\( = \frac{{10}}{{1 - \frac{3}{4}}}\) \( = 40\).

Tổng quãng đường bóng đi được đến khi bóng dừng hẳn \(2S - 10 = 70\) (m).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\].   
B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \cdot g\left( x \right)} \right] = L \cdot M\].      
C. \[\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\].        
D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là số \(a\) (hay \({u_n}\) dần tới \(a\)) khi \(n \to + \infty \), nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\).
B. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi \(n\) dần tới vô cực, nếu \(\left| {{u_n}} \right|\) có thể lớn hơn một số dương tùy ý, kể từ một số hạng nào đó trở đi.          
C. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là \( + \infty \) nếu \({u_n}\) có thể nhỏ hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.                    
D. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là \( - \infty \) khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Dãy số tăng.        
B. Dãy số giảm.         
C. Dãy số không tăng, không giảm.             
D. Dãy số vừa tăng vừa giảm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP