Câu hỏi:

18/11/2025 54 Lưu

Trong các dãy số sau, dãy số nào không phải là cấp số cộng?

A. \(\frac{1}{2};\frac{3}{2};\frac{5}{2};\frac{7}{2};\frac{9}{2}\).       
B. \(1;1;1;1;1\).           
C. \( - 8; - 6; - 4; - 2;0\).          
D. \(3;1; - 1; - 2; - 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đáp án A: Là cấp số cộng với \({u_1} = \frac{1}{2};d = 1\).

Đáp án B: Là cấp số cộng với \({u_1} = 1;d = 0\).

Đáp án C: Là cấp số cộng với \({u_1} = - 8;d = 2\).

Đáp án D: Không là cấp số cộng vì \({u_2} = {u_1} + \left( { - 2} \right);{u_4} = {u_3} + \left( { - 1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{12}}{4} = 3\).

b) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^2}\left( {x - 1} \right)} }}{{\sqrt {x - 1} + 1 - x}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x\sqrt {\left( {x - 1} \right)} }}{{\sqrt {x - 1} \left( {1 - \sqrt {x - 1} } \right)}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{x}{{1 - \sqrt {x - 1} }} = 1\).

Lời giải

Đáp án đúng là: A

\(\mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 1} \right) = 2\)\(\mathop {\lim }\limits_{x \to {1^ - }} \left( {1 - x} \right) = 0\)\(x \to {1^ - }\) nên \(1 - x > 0\).

Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 1}}{{1 - x}} = + \infty \).

Câu 4

A. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\].   
B. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \cdot g\left( x \right)} \right] = L \cdot M\].      
C. \[\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\].        
D. \[\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là số \(a\) (hay \({u_n}\) dần tới \(a\)) khi \(n \to + \infty \), nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\).
B. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi \(n\) dần tới vô cực, nếu \(\left| {{u_n}} \right|\) có thể lớn hơn một số dương tùy ý, kể từ một số hạng nào đó trở đi.          
C. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là \( + \infty \) nếu \({u_n}\) có thể nhỏ hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.                    
D. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là \( - \infty \) khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(SK\) (\(K\) là trung điểm của \(AB\)).           
B. \(SO\) (\(O\) là tâm của hình bình hành \(ABCD\)).         
C. \(SF\) (\(F\) là trung điểm của \(CD\)).
D. \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP