Cho tứ diện \(ABCD\), trên \(AC\) và \(AD\) lấy hai điểm \(M,N\) sao cho \(MN\) không song song với \(CD\). Gọi \(O\) là điểm bên trong tam giác \(BCD\).
a) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {BCD} \right)\).
b) Tìm giao điểm của \(BC\) với \(\left( {OMN} \right)\).
Cho tứ diện \(ABCD\), trên \(AC\) và \(AD\) lấy hai điểm \(M,N\) sao cho \(MN\) không song song với \(CD\). Gọi \(O\) là điểm bên trong tam giác \(BCD\).
a) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {BCD} \right)\).
b) Tìm giao điểm của \(BC\) với \(\left( {OMN} \right)\).
Câu hỏi trong đề: Bộ 10 đề thi Cuối kì 1 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:

a) Trong mặt phẳng \(\left( {ACD} \right)\) có \(MN\) không song song với \(CD\) nên \(MN \cap CD = E\).
Vì \(O,E\) là hai điểm chung của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {BCD} \right)\)
nên \(\left( {OMN} \right) \cap \left( {BCD} \right) = OE\).
b) Trong mặt phẳng \(\left( {BCD} \right)\), giả sử \(OE \cap BC = K\).
Vì \(\left\{ \begin{array}{l}K \in BC\\K \in OE \subset \left( {OMN} \right)\end{array} \right.\) nên \(K = BC \cap \left( {OMN} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{12}}{4} = 3\).
b) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^2}\left( {x - 1} \right)} }}{{\sqrt {x - 1} + 1 - x}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x\sqrt {\left( {x - 1} \right)} }}{{\sqrt {x - 1} \left( {1 - \sqrt {x - 1} } \right)}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{x}{{1 - \sqrt {x - 1} }} = 1\).
Lời giải
Đáp án đúng là: A
Có \(\mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 1} \right) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ - }} \left( {1 - x} \right) = 0\) mà \(x \to {1^ - }\) nên \(1 - x > 0\).
Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 1}}{{1 - x}} = + \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.