Câu hỏi:

19/11/2025 16 Lưu

Trong không gian cho 4 điểm phân biệt không đồng phẳng và không có 3 điểm nào thẳng hàng. Khi đó, có bao nhiêu mặt phẳng đi qua 3 trong số 4 điểm trên.

A. \(1\).           
B. \(2\).       
C. \(3\).    
D. \(4\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Qua 3 điểm không thẳng hàng ta xác định được một và chỉ một mặt phẳng.

Do đó có \(C_4^3 = 4\) mặt phẳng đi qua 3 trong số 4 điểm trên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{3}{2}\).     
B. \(0\).      
C. \(\frac{6}{5}\).     
D. \( - 6\).

Lời giải

Đáp án đúng là: D

\(\lim \frac{{3 \cdot {2^{n + 1}} - 2 \cdot {3^{n + 1}}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {2^n} - 6 \cdot {3^n}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {{\left( {\frac{2}{3}} \right)}^n} - 6}}{{4 \cdot {{\left( {\frac{1}{3}} \right)}^n} + 1}} = - 6\).

\(\lim {\left( {\frac{2}{3}} \right)^n} = 0\); \(\lim {\left( {\frac{1}{3}} \right)^n} = 0\).

Lời giải

Đáp án đúng là: C

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {3f\left( x \right) - 4g\left( x \right)} \right]\)

\( = \mathop {\lim }\limits_{x \to {x_0}} 3f\left( x \right) - \mathop {\lim }\limits_{x \to {x_0}} 4g\left( x \right)\)

\( = 3\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) - 4\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right)\)

\( = 3 \cdot 2 - 4 \cdot 3 = - 6\).

Câu 3

A. Ba điểm phân biệt.      
B. Một điểm và một đường thẳng.      
C. Hai đường thẳng cắt nhau.   
D. Bốn điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Dãy số tăng.  
B. Dãy số giảm.    
C. Dãy số không tăng, không giảm. 
D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({S_{10}} = - 125\).  
B. \({S_{10}} = - 250\).    
C. \({S_{10}} = 200\).    
D. \({S_{10}} = - 200\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP