Câu hỏi:

19/11/2025 7 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hai mặt phẳng không cắt nhau thì song song.
B. Hai mặt phẳng cùng song song với một đường thẳng thì cắt nhau.
C. Qua một điểm nằm ngoài một mặt phẳng cho trước có duy nhất một mặt phẳng song song với mặt phẳng đó.
D. Qua một điểm nằm ngoài một mặt phẳng cho trước có vô số mặt phẳng song song với mặt phẳng đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Theo lí thuyết, Qua một điểm nằm ngoài một mặt phẳng cho trước có duy nhất một mặt phẳng song song với mặt phẳng đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Media VietJack

Gọi \(M,N\) lần lượt là trung điểm của \(AB\)\(AD\).

\(M,N\) lần lượt là trung điểm của \(AB\)\(AD\) nên \(MN\) là đường trung bình của tam giác \(ABD\). Do đó \(MN{\rm{//}}BD\).

\(G\) là trọng tâm tam giác \(SAB\) nên \(\frac{{SG}}{{SM}} = \frac{2}{3}\).

\(G'\)là trọng tâm tam giác \(SAD\) nên \(\frac{{SG'}}{{SN}} = \frac{2}{3}\).

Do \(\frac{{SG}}{{SM}} = \frac{{SG'}}{{SN}} = \frac{2}{3}\) nên \(GG'{\rm{//}}MN\)\(MN{\rm{//}}BD\) nên \(GG'{\rm{//}}BD\).

Lời giải

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{3n - 1}}{{2n + 3}}} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( {3 - \frac{1}{n}} \right)}}{{n\left( {2 + \frac{3}{n}} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {3 - \frac{1}{n}} \right)}}{{\left( {2 + \frac{3}{n}} \right)}} = \frac{3}{2}\)

\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0;\,\,\mathop {\lim }\limits_{n \to + \infty } \frac{3}{n} = 0\).

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {2x + 1} - 1}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {2x + 1} - 1} \right)\left( {\sqrt {2x + 1} + 1} \right)}}{{x\left( {\sqrt {2x + 1} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{{2x + 1 - 1}}{{x\left( {\sqrt {2x + 1} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{x\left( {\sqrt {2x + 1} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{2}{{\left( {\sqrt {2x + 1} + 1} \right)}} = \frac{2}{{\left( {\sqrt {2.0 + 1} + 1} \right)}} = 1.\)

Câu 3

A. \(0\).     
B. \(2\).
C. \(1\).            
D. \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Qua 2 điểm phân biệt có duy nhất một mặt phẳng.

B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng.

C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng.
D. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {ABC} \right)\).          
B. \(\left( {ACD} \right)\).   
C. \(\left( {BCD} \right)\). 
D. \(\left( {ABD} \right)\).\(\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP