Cho hình chóp \(S.ABCD\) có đáy là hình bình hành.
a) Tìm giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
b) Gọi \(M,N\) lần lượt là các điểm trên các cạnh \(SB\) và \(SC\) sao cho \(MS = 2MB,NS = NC\). Mặt phẳng \(\left( {AMN} \right)\) cắt cạnh \(SD\) tại \(K\). Chứng minh \(MK{\rm{//}}\left( {ABCD} \right)\).
Câu hỏi trong đề: Bộ 10 đề thi Cuối kì 1 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:

a) Ta có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\,\left( 1 \right)\)
Trong \(\left( {ABCD} \right)\), gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Khi đó \(\left\{ \begin{array}{l}O \in \left( {SAC} \right)\\O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(SO = \left( {SAC} \right) \cap \left( {SBD} \right).\)
b) Trong \(\left( {SAC} \right)\), gọi \(E\) là giao điểm của \(AN\)và \(SO\)
Trong \(\left( {SBD} \right)\), \(ME\)cắt \(SD\) tại \(K\) mà \(ME \in (A{\rm{MN}})\)
\( \Rightarrow K\) là giao điểm của \(\left( {AMN} \right)\) với \(SD\).
Xét tam giác \(SAC\) có \(SO\) và \(AN\) là các trung tuyến và \(SO \cap AN = E\)
Nên \(E\) là trọng tâm tam giác \(SAC\). Do đó \(SE = 2EO \Rightarrow \frac{{SE}}{{EO}} = 2\).
Mặt khác \(MS = 2MB \Rightarrow \frac{{MS}}{{MB}} = 2\).
Do \(\frac{{SE}}{{EO}} = \frac{{MS}}{{MB}} = 2\) \( \Rightarrow ME{\rm{//}}BO\) hay \(MK{\rm{//}}BD\) mà \(BD \subset \left( {ABCD} \right)\).
Suy ra \(MK{\rm{//}}\left( {ABCD} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \({x_1} = \frac{{40,5 + 45,5}}{2} = 43\) là giá trị đại diện của nhóm \(\left[ {40,5;45,5} \right)\).
\({x_2} = \frac{{45,5 + 50,5}}{2} = 48\) là giá trị đại diện của nhóm \(\left[ {45,5;50,5} \right)\).
\({x_3} = \frac{{50,5 + 55,5}}{2} = 53\) là giá trị đại diện của nhóm \(\left[ {50,5;55,5} \right)\).
\({x_4} = \frac{{55,5 + 60,5}}{2} = 58\) là giá trị đại diện của nhóm \(\left[ {55,5;60,5} \right)\).
\({x_5} = \frac{{60,5 + 65,5}}{2} = 63\) là giá trị đại diện của nhóm \(\left[ {60,5;65,5} \right)\).
\({x_6} = \frac{{65,5 + 70,5}}{2} = 68\) là giá trị đại diện của nhóm \(\left[ {65,5;70,5} \right)\).
Cân nặng trung bình của học sinh lớp 11A là
\(\frac{{43 \cdot 10 + 48 \cdot 7 + 53 \cdot 16 + 58 \cdot 4 + 63 \cdot 2 + 68 \cdot 3}}{{10 + 7 + 16 + 4 + 2 + 3}} \approx 51,81\).
Lời giải
Kí hiệu \({A_n},{B_n}\) lần lượt là số tiền công (đơn vị đồng) cần trả theo cách tính giá của cơ sở A và cơ sở B.
Theo giả thiết ta có:
+ \({A_n}\) là tổng \(n\) số hạng đầu tiên của cấp số cộng với số hạng đầu \({u_1} = 50\;000\) và công sai \(d = 10\;000\).
+ \({B_n}\) là tổng \(n\) số hạng đầu tiên của cấp số nhân với số hạng đầu \({v_1} = 50\;000\)và công bội \(q = 1,08\).
Do đó:
\[{A_{20}} = \frac{{20\left( {2{u_1} + 19d} \right)}}{2} = 10\left( {2.50\;000 + 19.10\;000} \right) = 2\;900\;000.\]
\[{B_{20}} = {v_1}\frac{{1 - {q^{20}}}}{{1 - q}} = 50\;000 \times \frac{{1 - {{\left( {1,08} \right)}^{20}}}}{{1 - 1,08}} \approx 2\;288\;000.\]
\[{A_{40}} = \frac{{40\left( {2{u_1} + 39d} \right)}}{2} = 20\left( {2.50\;000 + 39.10\;000} \right) = 9\;800\;000.\]
\[{B_{40}} = {v_1}\frac{{1 - {q^{40}}}}{{1 - q}} = 50\;000 \times \frac{{1 - {{\left( {1,08} \right)}^{40}}}}{{1 - 1,08}} \approx 12\;953\;000.\]
Suy ra, chọn cơ sở B khoan giếng 20 mét và cơ sở A để khoan giếng 40 mét.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.