Câu hỏi:

19/11/2025 103 Lưu

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + n} - \sqrt {{n^2} + 1} } \right).\]                                                 b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + n} - \sqrt {{n^2} + 1} } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n - {n^2} - 1}}{{\sqrt {{n^2} + n} + \sqrt {{n^2} + 1} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n - 1}}{{\sqrt {{n^2} + n} + \sqrt {{n^2} + 1} }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 - \frac{1}{n}}}{{\sqrt {1 + \frac{1}{n}} + \sqrt {1 + \frac{1}{{{n^2}}}} }} = \frac{1}{{1 + 1}} = \frac{1}{2}.\]

b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{{2^2} + 2.2 + 4}}{{2 + 2}} = 3.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có bảng sau:

Doanh thu

\(\left[ {5;7} \right)\)

\(\left[ {7;9} \right)\)

\(\left[ {9;11} \right)\)

\(\left[ {11;13} \right)\)

\(\left[ {13;15} \right)\)

Giá trị đại diện

6

8

10

12

14

Số ngày

2

7

7

3

1

 

Số trung bình của mẫu số liệu là \(\overline x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4.\)

Câu 2

A. \[{u_n} = {u_1}.{q^{n - 1}},\,\forall n \ge 2.\]    
B. \({u_n} = {u_1}{q^n},\,\,\forall n \ge 2.\)
C. \({u_n} = {u_1}.q,\,\,\forall n \ge 2.\)    
D. \({u_n} = {u_1}.{q^{n + 1}},\,\,\forall n \ge 2.\)

Lời giải

Đáp án đúng là: A

Nếu một cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức \[{u_n} = {u_1}.{q^{n - 1}},\,\forall n \ge 2.\]

Câu 3

A. 0.  
B. \( + \infty .\)
C. \( - \infty .\) 
D. \(\frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP