Tính các giới hạn sau:
a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + n} - \sqrt {{n^2} + 1} } \right).\] b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}.\]
Quảng cáo
Trả lời:
a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + n} - \sqrt {{n^2} + 1} } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n - {n^2} - 1}}{{\sqrt {{n^2} + n} + \sqrt {{n^2} + 1} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n - 1}}{{\sqrt {{n^2} + n} + \sqrt {{n^2} + 1} }}\]
\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 - \frac{1}{n}}}{{\sqrt {1 + \frac{1}{n}} + \sqrt {1 + \frac{1}{{{n^2}}}} }} = \frac{1}{{1 + 1}} = \frac{1}{2}.\]
b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{{2^2} + 2.2 + 4}}{{2 + 2}} = 3.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có bảng sau:
|
Doanh thu |
\(\left[ {5;7} \right)\) |
\(\left[ {7;9} \right)\) |
\(\left[ {9;11} \right)\) |
\(\left[ {11;13} \right)\) |
\(\left[ {13;15} \right)\) |
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Số trung bình của mẫu số liệu là \(\overline x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4.\)
Câu 2
Lời giải
Đáp án đúng là: D

Xét \(\Delta ABC\) có: \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AC.\)
Suy ra \(MN\) là đường trung bình của \(\Delta ABC.\)
\( \Rightarrow MN{\rm{//}}BC.\)
Mà \(BC \subset \left( {BCD} \right);\,\,MN \not\subset \left( {BCD} \right).\)
\( \Rightarrow MN{\rm{//}}\left( {BCD} \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
C. \(\left( {BDC'} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.