Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O.\) Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,CD.\)
a) Chứng minh \(\left( {OMN} \right){\rm{//}}\left( {SBC} \right).\)
b) Giả sử hai tam giác \(SAD\) và \(SAB\) là các tam giác cân tại \(A.\) Gọi \(AE\) và \(AF\) lần lượt là đường phân giác trong của hai tam giác \(SAD\) và \(SAB\). Chứng minh \(EF{\rm{//}}\left( {SBD} \right).\)
Quảng cáo
Trả lời:

a) • Xét \(\Delta SAC\) có: \(M,\,\,O\) lần lượt là trung điểm của \(SA,\,AC\) nên \(MO\) là đường trung bình của \(\Delta SAC\), suy ra\[MO{\rm{//}}SC.\].
Mà \(SC \subset \left( {SBC} \right) \Rightarrow MO{\rm{//}}\left( {SBC} \right).\)
• Xét \[\Delta DCB\] có: \(N,\,\,O\)lần lượt là trung điểm của \[CD,\,\,BD\] nên \(NO\) là đường trung bình của \[\Delta DCB\], suy ra \(NO{\rm{//}}BC.\)
Mà \(BC \subset \left( {SBC} \right) \Rightarrow NO{\rm{//}}\left( {SBC} \right).\)
Ta có: \(MO{\rm{//}}\left( {SBC} \right);\,\,NO{\rm{//}}\left( {SBC} \right)\) và \(MO \cap NO = O\) trong \(\left( {OMN} \right).\)
\( \Rightarrow \left( {OMN} \right){\rm{//}}\left( {SBC} \right).\)
Vậy (OMN) // (SBC).
b) Ta có: \(\Delta SAD\) và \(\Delta SAB\) là hai tam giác cân tại \(A.\)
\( \Rightarrow AE,\,\,AF\) vừa là phân giác vừa là đường trung tuyến lần lượt của \(\Delta SAD\) và \(\Delta SAB.\)
\( \Rightarrow E,\,\,F\) lần lượt là trung điểm của \(SD\) và \(SB.\)
Suy ra \(EF\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow EF{\rm{//BD}}{\rm{.}}\)
Mà \(BD \subset \left( {SBD} \right) \Rightarrow EF{\rm{//}}\left( {SBD} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có bảng sau:
|
Doanh thu |
\(\left[ {5;7} \right)\) |
\(\left[ {7;9} \right)\) |
\(\left[ {9;11} \right)\) |
\(\left[ {11;13} \right)\) |
\(\left[ {13;15} \right)\) |
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Số trung bình của mẫu số liệu là \(\overline x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4.\)
Câu 2
Lời giải
Đáp án đúng là: A

Xét \(\Delta SAD\) có: \(M,\,\,P\) lần lượt là trung điểm của \(SA,\,\,SD.\)
Suy ra \(MP\) là đường trung bình của \(\Delta SAD.\)
\( \Rightarrow MP{\rm{//}}AD.\)
Mặt khác \(AD \subset \left( {ABCD} \right);\,\,MP \not\subset \left( {ABCD} \right).\)
\( \Rightarrow MP{\rm{//}}\left( {ABCD} \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
C. \(\left( {BDC'} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.