Câu hỏi:

19/11/2025 11 Lưu

Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

A. \(n = 12\).  

B. \(n = 13\).  
C. \(n = 14\). 
D. \(n = 15\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề ta có \({u_1} =  - 3;{u_n} = 23;d = 2\).

Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d\)\( \Leftrightarrow  - 3 + \left( {n - 1} \right).2 = 23\)\( \Leftrightarrow n = 14\).

Suy ra cấp số cộng có 14 số hạng. Do đó cần viết xen kẽ giữa hai số đã cho 12 số hạng. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

Lời giải

Ta có \(\left\{ \begin{array}{l}{u_3} =  - 3\\{u_8} =  - 23\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d =  - 3\\{u_1} + 7d =  - 23\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5\\d =  - 4\end{array} \right.\).

Khi đó \({S_{16}} = \frac{{16}}{2}\left( {2{u_1} + 15d} \right) = 8\left[ {2 \cdot 5 - 15 \cdot \left( { - 4} \right)} \right] = 560\).

Trả lời: 560.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP