Câu hỏi:

19/11/2025 154 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) có số hạng tổng quát \({u_n} = \frac{1}{{{2^n}}}\).

a) Dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.

Đúng
Sai

b) Số thứ 8 của dãy số là \(\frac{1}{{128}}\).

Đúng
Sai

c) Số 64 thuộc dãy số \(\left( {{u_n}} \right)\).

Đúng
Sai
d) Dãy số \(\left( {{u_n}} \right)\) là một dãy số bị chặn.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{2^{n + 1}}}}:\frac{1}{{{2^n}}} = \frac{1}{2} < 1\). Suy ra dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.

b) \({u_8} = \frac{1}{{{2^8}}} = \frac{1}{{256}}\).

c) Ta có \(\frac{1}{{{2^n}}} = 64\)\( \Leftrightarrow {2^n} = \frac{1}{{64}}\)\( \Leftrightarrow {2^n} = \frac{1}{{64}} \Rightarrow n =  - 6\) (loại, vì \(n \in {\mathbb{N}^*}\)).

d) \(0 < \frac{1}{{{2^n}}} \le \frac{1}{2}\). Suy ra dãy số \(\left( {{u_n}} \right)\) là một dãy số bị chặn.

Đáp án: a) Đúng;    b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

Câu 2

a) Công bội của cấp số nhân là \(q = 3\).

Đúng
Sai

b) Số hạng thứ 6 của cấp số nhân là \({u_6} = 192\).

Đúng
Sai

c) Tổng 5 số hạng đầu tiên của cấp số nhân là 186.

Đúng
Sai
d) Công thức số hạng tổng quát của cấp số nhân là \({u_n} = 6 \cdot {3^{n - 1}}\).
Đúng
Sai

Lời giải

a) \(\left\{ \begin{array}{l}{u_4} - {u_2} = 36\\{u_5} - {u_3} = 72\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} - {u_1}q = 36\\{u_1}{q^4} - {u_1}{q^2} = 72\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^2} - 1} \right) = 36\\{u_1}{q^2}\left( {{q^2} - 1} \right) = 72\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 6\\q = 2\end{array} \right.\).

b) \({u_6} = {u_1}{q^5} = 6 \cdot {2^5} = 192\).

c) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{6\left( {1 - {2^5}} \right)}}{{1 - 2}} = 186\).

d) Ta có \({u_n} = {u_1}{q^{n - 1}} = 6 \cdot {2^{n - 1}}\).

Đáp án: a) Sai;    b) Đúng;   c) Đúng;   d) Sai.

Câu 3

a) Số hạng thứ hai của cấp số cộng là \({u_2} = 7\).

Đúng
Sai

b) Công sai của cấp số cộng \(d = 5\).

Đúng
Sai

c) Số hạng tổng quát của cấp số cộng đã cho \({u_n} = 5n + 3\).

Đúng
Sai
d) Tổng các số hạng từ số hạng thứ 11 đến số hạng thứ 100 của cấp số cộng đã cho bằng 25705.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Cấp số nhân có công bội \(q =  - \frac{3}{2}\).

Đúng
Sai

b) Số hạng đầu \({u_1} = \frac{{ - 8}}{3}\).

Đúng
Sai

c) Số hạng \({u_5} = \frac{{27}}{2}\).

Đúng
Sai
d) \(\frac{{ - 2187}}{{32}}\) là số hạng thứ 8.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP